

MENTORS DIRECTORY

2026 SUMMER RESEARCH INTERNSHIP AND FELLOWSHIP PROGRAM

Offered by the

**West Virginia IDeA Network of Biomedical Research Excellence
(WV-INBRE)**

to be held at

**The Joan C. Edwards School of Medicine
at Marshall University**

And

**The Robert C. Byrd Health Sciences Center
Of West Virginia University**

Introduction

WV-INBRE is pleased to offer summer research internships to students from community colleges, colleges, and universities, and participating in the WV-INBRE program. In 2026, the internship period will be from May 26 through July 28, with the Summer Research Symposium to be held on July 28 in Morgantown, WV. The directory lists faculty members at Marshall University and West Virginia University who have agreed to participate as mentors in the summer internship program. Mentors have submitted a description of the projects that are available to interns in their laboratories. Please review these carefully so that you are aware of what is available for summer projects.

Pages 3-8 contain a listing of mentors with a short research description, and a listing of the general areas of their research. Detailed project descriptions for each mentor begin on page 9. Project descriptions include mentor contact information and where available a website address.

Application forms are available on the WV-INBRE web site: <https://www.wv-inbre.net/summer-program-students>

For general questions about the summer internship and fellowship program please the Summer Program Director:

Dr. Larry Grover
Joan C. Edwards School of Medicine
Marshall University
(304) 696-7328
grover@marshall.edu

WV-INBRE website: <https://www.wv-inbre.net/>

Directory of Mentors – Mentors are listed by their location; the first list contains mentors at Marshall University and the second list contains mentors at West Virginia University

Mentors at Marshall University

<u>Mentor</u>	<u>Description of Research</u>	<u>Page #</u>
Dr. Ruhul Amin	Developing Novel Therapeutics for Lung Cancer	9
Dr. Subha Arthur	Regulation of intestinal bile acid absorption in obesity	11
Dr. Ji C. Bihl	1. The role of exosomes in strokes and diabetes 2. The protective role of angiotensin-converting enzyme 2 (ACE2) in vascular diseases and ageing. 3. The role of extracellular vesicles in mediating gut-brain communication.	12
Dr. Lydia Bogomolnaya	1. Identification of natural functions of drug efflux pumps during infection 2. Defining the role of secreted DUF1471-containing proteins in adaptation of bacteria to different environments	14
Dr. Alip Borthakur	1. Intestinal Epithelial Creatine Transporter: A Novel Therapeutic Target for Inflammatory Bowel Disease 2. Inflammatory Bowel Disease-associated Microbial Amyloids: A Novel Link Between Gut Inflammation and Dementia	15
Dr. Liquan Cai	Na+/K+-ATPase signaling as a novel strategy to prevent or slow muscle loss in chronic diseases	17
Dr. Yen On Chan	Bioinformatics analysis, computational pipeline development, and web development	18
Dr. Jessica Childs	Epigenetic and molecular mechanisms that shape neuronal activity in the medial habenula and affect relapse vulnerability	19
Dr. Piyali Dasgupta	1. Anti-cancer activity of nicotinic antagonists in lung cancer 2. Capsaicin, lung cancer and ovarian cancer	20
Dr. Price Dickson	Systems genetics and recombinant inbred mouse panels for discovery of the mechanisms driving drug addiction	21
Dr. Chatrawee Duangjan	Therapeutic potential of Appalachian Natural Products for cancer and age-related diseases	22
Dr. Brandon Henderson	Examining the effect of flavors on vaping-related behaviors	23
Dr. Jung Han Kim	Genetics of obesity, type 2 diabetes, and hyperlipidemia	24
Dr. Trupti Joshi	Development of automated workflows for data analytics, database and web-based framework and portal development, computational methods development for predictions as well as new AI based approaches for data integration and inferences	25
Dr. Abdelnathy Khalyfa	Comparative Cellular Responses to Sustained vs. Intermittent Hypoxia in Coronary Artery and Cardiac Microvascular Endothelial Cells	27

Dr. Wei Li	1. Explore thymidine phosphorylase (TYMP)'s role in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and atherogenesis. 2. Explore thymidine phosphorylase (TYMP)'s role in post-COVID-19 associated complications, including the development of atherosclerosis and lung cancer.	29
Dr. Tim Long	New treatment strategies for multi-drug resistant infections	30
Dr. Yongke Lu	Peroxisomes and metabolic liver disease	31
Dr. Zhen Lyu	Computational and bioinformatics approaches to analyze and interpret high-throughput sequencing data	32
Dr. Balasubramania Palaniappan	Obesity, gut microbiota dysbiosis, and chronic low-grade Inflammation in inflammatory bowel diseases	33
Dr. Marco Pessoa	Improving stem cell therapy for myocardial infarction by using the signaling function of the Na^+/K^+ -ATPase	35
Dr. Sandrine V. Pierre	Cardioprotection by Na/K-ATPase ligands in uremic cardiomyopathy	36
Dr. Gary Rankin	Kidney and liver toxicology	37
Dr. Louise Risher	How adolescent binge drinking influences brain function	38
Dr. Travis Salisbury	Signaling mechanisms by which obesity associated Secreted factors stimulate breast cancer cell migration and invasiveness	39
Dr. Nalini Santanam	1. Alzheimer's disease, aging, and obesity 2. Vaping and exercise 3. Heart fat and health 4. New non-addictive pain medications	40
Dr. Yevgeniy Shakirov	1. Genetic and epigenetic architecture of natural telomere length variation 2. Analysis of the interplay between telomere biology and ribosome biogenesis	41
Dr. Vaibhav Sidarala	Control of pancreatic β -cell physiology by mitochondrial dynamics	42
Dr. Soudamani Singh	1. Adipose-Derived Exosomes and Nutrient Absorption 2. Effects of Microplastics on Intestinal Nutrient Absorption	43
Dr. Komal Sodhi	Contributions of chronic oxidative stress to cardiovascular diseases, chronic kidney disease, neurodegeneration, obesity, and metabolic syndrome	44
Dr. Mohammad Vahed	Computational biology, biomedical data science, and AI applications in health research	45
Dr. Monica Valentovic	1. Reducing serious cancer chemotherapy side effects 2. Potential role of e-vape flavoring agents in renal impairment 3. Examination of the mechanism of renal damage by an antiviral agent used in treating HIV and hepatitis B patients	46

Dr. Mindy Varney	1. Determining how obesity contributes to initiation and progression of myelodysplastic syndromes (MDS), which are blood and bone marrow cancers 2. Defining the mechanisms by which obese individuals are more susceptible to infection and have lowered vaccine efficacy	47
Dr. Mohit Verma	Computational biology, multi-omics integration, cancer immune-prevention, lipid metabolism, maternal-fetal transcriptomics, miRNA/lnRNA analysis	48
Dr. Jinju Wang	1. Role of circulating extracellular vesicles in hypertension-Related cognitive impairment 2. Role of exercise-intervened exosomes in ischemic stroke 3. The potential application of angiotensin-converting enzyme 2 (ACE-2)-primed EXs in hypertension-related ischemic stroke 4. Role of perivascular adipose tissue-EVs in diabetes-associated vascular dysfunction	50
Dr. Wei Xu	How lactate metabolism shapes the virulence of <i>streptococcus pyogenes</i>	52
Dr. Hongwei Yu	1. Cystic Fibrosis Biofilms 2. Testing antimicrobials 3. SFB probiotics 4. New biopolymer development	53

Marshall University Mentor Listing According to Area of Research

Addiction, Drug Abuse: Childs; Dickson; Henderson; Risher

Bioinformatics, Computational Biology, and AI: Chan; Joshi; Lyu; Shakirov; Verma

Cancer Research: Amin; Dasgupta; Salisbury; Valentovic; Varney

Cardiovascular Research: Bihl; Khalyfa; Li; Pessoa; Pierre; Santanam; Sodhi; Wang

Diabetes: Bihl; Kim; Sidarala

Drug Action, Metabolism, and Resistance: Amin; Santanam; Valentovic

GI Research: Arthur; Borthakur; Lu; Palaniappan; Singh

Genetic Research: Kim; Shakirov

Infectious Diseases: Bogomolnaya; Long; Varney; Xu; Yu

Muscle wasting: Cai

Natural Products: Duangjan

Neuroscience: Childs; Dickson; Henderson; Risher

Obesity Research: Arthur; Kim; Salisbury; Santanam; Sidarala; Sodhi; Varney

Renal Research: Rankin; Valentovic

Toxicology Research: Rankin; Valentovic

Mentors at the West Virginia University Health Sciences Center

<u>Mentor</u>	<u>Description of Research</u>	<u>Page #</u>
Dr. Ariel Agmon	Three-dimensional reconstruction of neuronal networks in the brain	54
Dr. Sharan Bobbala	1. Precise intracellular delivery of adjuvants for vaccine applications 2. Nucleic acid/small molecule treatment	55

	strategies for B-cell acute lymphoblastic leukemia	
Dr. Lizzie Bowbridge	Estradiol and adverse reproductive outcomes due to maternal inhalation exposure to toxicants	56
Dr. Julie Brefczynski-Lewis	Effects of compassion meditation on physiological and neural responses to stressful stimuli	57
Dr. Morgan Bridi	How the brain's circuits and synapses develop and change in typical and atypical/aversive/challenging conditions	58
Dr. Wen-Tao Deng	Molecular mechanisms and gene therapy for inherited retina diseases	59
Dr. Benoit Driesschaert	Synthesis of imaging probes for biomedical magnetic resonance applications	60
Dr. Jianhai Du	The role of nutrient availability in retinal health	61
Dr. Meenal Elliot	Investigating the “protective” immune response against SARS-CoV-2	62
Dr. Werner J. Geldenhuys	1. Discovery of compounds to treat Parkinson's Disease 2. Delivery of therapeutic proteins using nanoparticles	63
Dr. Lori Hazlehurst	Development of novel therapeutic strategies for tumors that reside or home to bone	64
Dr. Lisa Holland	Enzyme Inhibition: Using Microscale Separations to Screen and Quantify the Inhibition of Viral Neuraminidase	65
Dr. John Hollander	Proteins involved in protection against cardiac diseases	66
Dr. Michael Hu	Bioinformatics, AI (Large Language Models), Data Science, and Epigenome Biology	67
Dr. Salik Hussain	Identification of novel therapeutic targets to treat pulmonary disorders	68
Dr. Alexey Ivanov	1. Negative control of EMT by epithelial-specific Transcription factors. 2. Role of the TGF-beta pathway in partial EMT and drug resistance of triple-negative breast cancer. 3. Identification and characterization of prognostic markers for lung cancer.	69
Dr. Saravanan Kolandaivelu	1. The molecular mechanism behind nuclear-specific NAD ⁺ role in retinal neurogenesis 2. The molecular interplay between NMNAT1 and SARM1 in retinal neurogenesis 3. Uncovering the role of Na ⁺ /K ⁺ -ATPase-dependent vitamin C homeostasis in retinal function and neural circuitry	71
Dr. Roberta Leonardi	Regulation of CoA levels in diabetes and obesity	73
Dr. Scott Levick	Anti-fibrotic effects of neurokinin-1 (NK-1R) in cardiac fibrosis	74

Dr. James Lewis	Neuroimaging and sensory processing in human brain function	75
Dr. Rong Liu	1. In vitro reconstitution of the microtubule cytoskeleton of auditory sensory epithelial cells 2. Single-molecule super-resolution imaging of intraflagellar train (IFT) transport in mammalian primary cilia 3. The structure and molecular characterization of <i>Drosophila</i> myosin	76
Dr. Paul R. Lockman	Prevention of brain metastases in breast cancer	77
Dr. Randy Nelson	Circadian rhythm disruption and health	78
Dr. Timothy Nurkiewicz	Airborne particles and systemic microvascular endothelial dysfunction	79
Dr. Mark Olfert	Microvessel and vascular responses to E-cigarettes, nicotine and/or environmental stress	80
Dr. Ming Pei	Decode the mystery of matrix microenvironment behind the rejuvenation of adult stem cells	81
Dr. Elena N. Pugacheva	1. Molecular mechanisms of breast cancer metastasis and tumor hypoxia 2. The role of NEED9 adaptor protein in metastasis of HER2+ breast cancers	82
Dr. Visvanathan Ramamurthy	1. Mechanisms behind ciliopathies, in particular blindness, deafness and hydrocephaly 2. How glia interacts and supports neurons	83
Dr. Aaron R. Robart	Structural Biology-Guided Exploration of Flavivirus 5' and 3' UTRs for the Development of Innovative Antiviral Therapeutics	84
Dr. Vincent Setola	Identification of drugs and/or molecular targets that could lead to new medications for substance use disorder.	85
Dr. Dharendra Thapa	Role of acetylation in regulating cardiac mitochondrial metabolism, oxidative stress, mitophagy, mitochondrial dynamics and bioenergetics	86
Dr. Edwin Wan	Understanding how the immune system impacts the outcomes of neurological diseases, with a focus on multiple sclerosis and ischemic stroke	87
Dr. Bradley Webb	Cell biology and biochemistry of intermediary metabolic Enzymes	88
Dr. Alexander Widiapradja	The Effects of Foxe1 Loss of Function in Diabetic Thyroid	89

WVU Mentor Listing According to Area of Research

Addiction: Setola

Biochemistry: Deng; Holland; Kolandaivelu; Liu; Webb; Ramamurthy; Robart

Bioinformatics: Hu

Biomedical Magnetic Resonance: Driesschaert

Cancer: Bobbala; Hazlehurst; Ivanov; Lockman; Pugacheva

Cardiovascular: Hollander; Levick; Nurkiewicz; Olfert; Thapa

Diabetes: Leonardi; Widiapradja

Drug Development: Geldenhuys; Robart; Setola

GI: Rajendran

Infectious Diseases: Elliot; Holland

Inflammation: Brown

Nanotechnology: Bobbala; Geldenhuys

Neuroscience: Agmon; Bridi; Geldenhuys; Lewis; Nelson; Brefczynski-Lewis; Wan

Obesity: Leonardi

Ophthalmology and Visual Sciences: Deng; Du; Kolandaivelu; Ramamurthy

Pharmacology: Geldenhuys

Pulmonary: Hussain; Nurkiewicz

Reproductive Biology: Bowdridge

Tissue Engineering: Pei

II. Mentors at Marshall University

A.R.M. Ruhul Amin, B.Pharm., M.Pharm., Ph.D.

Assistant Professor of Pharmacology
Department of Pharmaceutical Sciences and Research
Marshall University School of Pharmacy
Adjunct Assistant Professor
School of Medicine
One John Marshall Drive
Huntington, WV 25755
Email: amina@marshall.edu
Tel: 304-696-7371 (O); 404-210-2102 (C)
Fax: 304-696-7309

Project 1

Chemoprevention of head and neck cancer using curcumin analog FLLL12: Curcumin is a dietary compound isolated from the rhizomes of *Curcuma longa*, commonly known as “haldi” and has been studied extensively for chemoprevention and treatment. Unfortunately, the clinical success was hindered by its poor absorption and rapid metabolic degradation leading to poor bioavailability. To circumvent the bioavailability issue, researchers are undertaking multiple approaches, including the synthesis of more potent analogs with better pharmacokinetic profiles. My laboratory is developing FLLL12 for the chemoprevention of head and neck cancer. We have already shown that FLLL12 is more potent, has favorable pharmacokinetic profiles, and is mechanistically distinct from curcumin (PMID: 25917567, 26511491, 25910231, 34146588). Grants: R15 (funded), R01: Pending

Project 2

Investigating the mechanism of drug resistance

Cancer is the second leading cause of death in the United States accounting for over 600K deaths per year. Intrinsic as well as acquired resistance to anti-cancer drugs are continuously posing challenges to the success of cancer treatments. Understanding the molecular mechanism of drug resistance is the key to overcoming drug resistance and developing new treatment regimen using a combinatorial approach. Keeping this objective upfront, my laboratory is utilizing *in vitro* cell culture and *in vivo* animal models of lung and head and neck cancers to understand the molecular mechanism of resistance to targeted therapy. My laboratory has identified that some head and neck cancer cell lines overexpress p-Met downstream of Src family kinases (SFK) and these cell lines are resistant to apoptosis induced by the combination of erlotinib (EGFR inhibitor) and BKM120 (PI3K inhibitor). The addition of SFK inhibitor or Met inhibitor sensitizes these cells to apoptosis. The laboratory is currently exploring the downstream targets of SFK-Met signaling.

Project 3

Chemoprevention using natural compounds

Chemoprevention means pharmacological intervention before the development of invasive cancer (full-blown cancer) at a precancerous stage with the hope of slowing down or reversing the carcinogenesis process. However, drug-associated toxicity is one of the major concerns in using drugs in prevention settings since the recipients of the chemopreventive drugs are normal subjects with a high risk of developing cancer. Therefore, those agents with non-toxic or minimal side effects would be ideal candidates as chemopreventive agents. Because of their proven high safety margin through centuries of human consumption as food or as traditional medicines, natural compounds present in fruits, vegetables and spices have drawn special attention for chemoprevention. With this objective in mind, my laboratory is investigating the potential of diet-derived natural compounds such as green tea EGCG, luteolin, resveratrol, curcumin, etc. for chemoprevention of head and neck cancer and lung cancer. The project includes testing *in vitro* and *in vivo* efficacy and exploring their molecular mechanism of action.

Project 4.

Developing Novel Therapeutics for Cancers

Most of the currently available chemotherapy drugs are DNA-damaging agents that are effective in eradicating cancer cells. Unfortunately, most of them are very toxic. Moreover, their widespread application is compromised by intrinsic and acquired resistance. In collaboration with Dr. Long, we have synthesized a curcumin analog that is highly potent, mechanistically distinct from curcumin and FLLL12 and induces DNA damage. My laboratory will further explore the mechanism of action and develop this novel DNA-damaging compound for the treatment of cancers.

One student can be recruited for each project. These projects will provide opportunities to learn:

- Mammalian cell culture and maintenance
- Cell proliferation and cell death assays
- RNA and plasmid DNA isolation
- Gene expression analysis by PCR
- Protein expression analysis by western blotting
- Flow cytometry analysis
- Measuring protein and nucleic acid concentrations

Dr. Subha Arthur

Associate Professor

Department of Biomedical Sciences

Marshall University School of Medicine

304-696-7324

arthursu@marshall.edu

Studies on the regulation of intestinal bile acid absorption in obesity. Energy imbalance and excessive body fat deposition occurring primarily due to excess food consumption and unhealthy diet are the hallmarks of obesity. Recent studies have shown that altered intestinal secretion of bile acids (BA) that facilitates digestion and absorption of dietary fat could be responsible for excess dietary fat absorption in obesity. Moreover, these BA when in systemic circulation also exert endocrine actions regulating a broad spectrum of physiological effects. BA secreted in the intestinal lumen enter systemic circulation through an intestinal absorptive mechanism mediated by Na-bile acid transporter (ASBT) present in the apical membrane of villus cells. Preliminary studies from my lab showed that in diet-induced rat model of obesity, high fat diet increased ASBT expression prior to the onset and progression of dyslipidemia, indicating that the primary event that initiates the development of dyslipidemia in obesity is the increased intestinal absorption of BA by ASBT. Moreover, ASBT is stimulated not only at the cellular level, but also along the crypt-villus and caudal-oral axes in small intestine. This increase of ASBT at three levels in obesity undoubtedly increases net BA absorption and subsequently contributes to enhanced fat absorption in obesity, indicating that altered ASBT regulation may be central to the pathogenesis of obesity. The ongoing research involves understanding the physiological and molecular regulation of intestinal bile acid absorption mediated by ASBT in the intestine using *in vivo* rat models of obesity. The outcome of the proposed studies will identify novel intestine-specific target/s to reverse ASBT-mediated increased BA absorption in obesity and thereby help mitigate obesity-associated dyslipidemia and other metabolic disorders.

Ji C. Bihl, M.D., Ph.D.

Associate Professor

Department of Biomedical Sciences

Joan C. Edwards School of Medicine

Marshall University

1 John Marshall Drive, Huntington WV 25701

The Bihl lab studies the role of extracellular vesicles (EVs) in mediating cell-cell and organ-organ communications including adipose tissue with the brain and gut with the brain. The role of stem cell-released EVs in angiogenesis in stroke and diabetic vascular complications is also studied. Our goal is to develop new therapeutical avenues/compounds addressing cerebrovascular diseases. The research approaches include transgenic mouse models in combination with animal surgeries, such as minipump/microinjection for chronic/acute drug administration, telemetric probe implantation for recording blood pressure and heart rate, and animal modeling for MCAO-induced ischemic stroke and brain injection for hemorrhagic stroke.

Project 1. Role of adipocyte-derived exosomes in cerebrovascular complications of diabetes

Type 2 Diabetes Mellitus (T2DM) is primarily characterized by hyperglycemia accompanied by adipose tissue (AT) dysfunction. More importantly, T2DM is a risk factor for stroke and other cerebrovascular diseases, which might be related to AT dysfunction. Even though AT is comprised of various cells, previous studies have shown that predominantly adipocytes (Adp) dysfunction contributes to diabetes and related complications. Others and our previous research demonstrated enlarged ischemic stroke size and impaired functional recovery in diabetic mice. However, molecular mechanisms linking dysfunctional AT and stroke in diabetes remain unidentified. One of the underlying mechanisms could be the extracellular vesicle-mediated inter-organ communication, particularly through exosomes (EXs). Previous studies have found that Adp-released EXs play a crucial role in the functionality of AT- AT-released secretomes. Recent studies show that Adp-EXs regulate vascular functioning in diabetes via oxidative stress. Also, Adp-EXs have been found to downregulate the expression of various mitochondrial functioning proteins. Therefore, Adp-EXs could be pivotal in mediating crosstalk between dysfunctional AT and the brain to cause worse outcomes of strokes in diabetes. With our long-term goal to unravel novel therapeutic targets for strokes in diabetes, the current proposal is designed to determine how Adp-EXs facilitate communication between AT and the brain by influencing brain endothelial cells (ECs) which are critical targets in the treatment of stroke. We will critically analyze the content and functional changes of Adp-EXs following diabetes and elucidate the mechanism that drives outcome alterations of strokes (cerebral injury and neurological function). Altogether, we hypothesized that diabetic Adp-EXs aggravate cerebral injury and delay functional recovery in strokes by inducing oxidative stress and mitochondria dysfunction.

The approaches for this project include *in vitro* cell culture and *in vivo* animal models as well. For the *in vitro* model, EXs will be isolated from the adipocytes treated with high glucose or normal glucose media. For the *in vivo* model, EXs will be isolated from the adipose tissue from *dib/db* diabetic mice. The size and concentration will be measured by using NTA, and the contents will be determined by PCR or western blot. The function of different EXs will be tested on ECs w/wo hypoxia/reoxygenation injury.

Project 2. The role of retinoic acid-inducible gene I in strokes

Subarachnoid hemorrhage (SAH), a medical emergency, is bleeding in the space between the brain and the surrounding membrane and is usually from a bulging blood vessel that bursts in the brain. The key goals for all SAH patients are the prevention of rebleeding, delayed cerebral ischemia, and neuroprotection. Recent studies showed that early brain injuries (EBI) occurring within 72 hours after SAH are important factors correlated with poor clinic outcomes, including microcirculatory dysfunction, blood-brain barrier (BBB) disruption, brain edema, neuroinflammation, oxidative cascade, and death of brain cells. Therefore, protection of the brain from SAH-induced EBI is considered a key therapeutic strategy for SAH. Retinoic acid-inducible gene I (RIG-1) is found to participate in inflammatory responses by activating nuclear factor kappa B (NF- κ B)/caspase-3 signaling. RIG-1 is found to be expressed in the brain and is involved in neuroinflammation after cerebral ischemia injury by promoting NF- κ B signaling pathway activation. Moreover, RIG-I has been

shown controlling disorders associated with altered immunity and inflammation in endothelial cells (ECs). Activation of RIG-I significantly impairs EC function and induces the activation of downstream pro-inflammatory signals, which further participate in vascular pathology and BBB function damage. Collectively, inhibition of RIG-1 could be a potential treatment target for SAH by providing brain protection from EBI.

The objectives are to determine the role of RIG-1 in EBI after SAH by focusing on the EC function on BBB through the RIG-1 neuroinflammatory pathway. The approaches for this project include *in vitro* cell culture and *in vivo* animal models as well. For the *in vitro* model, ECs will be treated with oxyhemoglobin (OxyHb) and siRIG-1 to determine the role of inhibition of RIG-1 in protecting ECs from OxyHb-induced injury. For the *in vivo* model, the mice will be subjected to surgery to induce SAH and treated with siRIG-1 to determine the role of inhibition of RIG-1 in protecting the brain from SAH-induced injury.

Project 3. The role of extracellular vesicles in mediating gut-brain communication

Extracellular vesicles (EVs) serve as cell-to-cell and inter-organ communicators by conveying proteins and nucleic acids with regulatory functions. Emerging evidence shows that gut microbial-released EVs play a pivotal role in the gut-brain axis, bidirectional communication, and crosstalk between the gut and the brain. Increasing pre-clinical and clinical evidence suggests that gut bacteria-released EVs are capable of eliciting distinct signaling to the brain with the ability to cross the blood-brain barrier, exerting regulatory function on brain cells such as neurons, astrocytes, and microglia, via their abundant and diversified protein and nucleic acid cargo. Conversely, EVs derived from certain species of bacteria, particularly from gut commensals with probiotic properties, have recently been shown to confer distinct therapeutic effects on various neurological disorders. Thus, gut bacterial EVs may be both a cause of and therapy for neuropathological complications. We have recently established a method to isolate EVs from gut microbiota. Further studies will investigate the contents and function of gut microbiota-released EVs. The function of gut microbiota-released EVs on brain cells, neurons, and astrocytes will be tested *in vitro*.

Dr. Lydia Bogomolnaya

Assistant Professor of Biomedical Sciences

Department of Biomedical Sciences, Joan C. Edwards School of Medicine,

Marshall University, BBSC-235H

Email: bogomolnaya@marshall.edu

Phone: 304-696-5110

Our research focuses on characterization of molecular mechanisms utilized by Gram-negative bacteria *Salmonella enterica* ser. Typhimurium and *Serratia marcescens* to survive host response and to develop better treatment options. In particular, we are interested in the following important questions:

Project #1: Identification of natural functions of drug efflux pumps during infection

Non-typhoidal *Salmonella enterica* serotypes including Typhimurium are the leading cause of bacterial food-borne enteritis in the United States. Until recently, *Salmonella* isolates were highly susceptible to most of the commonly used antibiotics but in the last decade the emergence of multidrug resistant *Salmonella* has been reported worldwide. *Serratia marcescens* is an opportunistic pathogen with increasing clinical importance. *S. marcescens* can cause meningitis, endocarditis, infections of airway and urinary tract, especially in immune-compromised patients. Efficiency of antibiotic therapy for these patients in some cases is extremely low due to the high intrinsic antibiotic resistance of *S. marcescens*. One mechanism for resistance of bacteria to antibiotics is through antibiotic efflux via multidrug efflux pumps. However, little else is known about the natural functions of these pumps during infection. We found that at least one pump called MacAB present in both bacterial species protects them against reactive oxygen species (ROS). We are interested in identification of natural substrates of this pump; how these substrates protect bacteria from ROS and how substrate production is regulated. Our studies will advance our understanding of the natural functions of bacterial efflux pumps beyond excretion of antibiotics and will aid to develop alternative strategies to control bacterial infections and augment conventional antimicrobial therapy.

Project #2: Defining the role of secreted DUF1471-containing proteins in adaptation of bacteria to different environments

Bacteria are able to successfully exist in ever-changing environment. For a quick adaptation to a new niche, bacteria rely on secondary metabolites, peptides and secreted proteins. These molecules can participate in a number of important biological processes: signal transduction within population, production of new compounds (for example, antibiotics), formation of biofilms, and also play an important role in virulence. Gram-negative bacteria from *Enterobacteriaceae* family secrete in the environment a number of proteins containing DUF1471 domain with unknown function and a similar structure. The physiological role of these proteins in maintaining of bacterial viability remains unexplored. We hypothesize that bacteria utilize DUF1471-containing proteins as a network of signals to accelerate adaptation to a new environment. Our studies will be focused on identification of DUF1471-containing proteins needed for survival during infection and during antibiotic exposure.

WV-INBRE participants will receive training in standard microbiological techniques, molecular cloning, generation of mutants, DNA and protein analysis, and animal handling.

Alip Borthakur, Ph.D.

Assistant Professor

Department of Biomedical Sciences

Marshall University - Joan C. Edward School of Medicine

Bryd Biotechnology Science Center, BBSC-336-T

Huntington, WV-25755

borthakur@marshall.edu

304-696-5079

Project 1: Intestinal Epithelial Creatine Transporter: A Novel Therapeutic Target for Inflammatory Bowel Disease

PROJECT SUMMARY: Inflammatory bowel diseases (IBD) that include ulcerative colitis (UC) and Crohn's disease (CD) are chronic relapsing-remitting inflammatory disorders of the gastrointestinal tract, affecting over 3 million Americans yearly. IBD may develop in genetically susceptible individuals upon exposure to environmental triggers. In Appalachia, including West Virginia, psychiatric comorbidities such as anxiety and depression and metabolic syndrome (obesity, diabetes, and hypertension) are major factors of high IBD prevalence. Further, IBD patients have a higher risk of developing colorectal cancer. For its relapsing-remitting episodic nature, IBD requires long-term preventive care with effective diet and lifestyle plans. *Therefore, there is an urgent need to re-evaluate the current treatment options and identify new therapeutic targets for IBD.*

IBD has long been known as a disease of deficient mucosal nutrition and energy that strongly coincides with the degree of inflammation. However, the mechanisms of how energy deficiency aggravates inflammation in IBD are understudied. Creatine (Cr), a vital dietary nutrient, is pivotal in cellular energy metabolism, including intestinal epithelial cells (IECs). Cr also improves intestinal barrier and mitochondrial function compromised in IBD. Cr is widely used in sports medicine and conditions like myopathies and neurodegenerative diseases. However, the potential ameliorative effects of Cr in IBD via augmenting cellular energy and barrier function are underappreciated. Dietary Cr is absorbed via the creatine transporter (CrT1, SLC6A8) expressed on IEC's apical membranes. Therefore, the pleiotropic beneficial effects of Cr supplements in IBD depend on the functionality of CrT1 in the inflamed mucosa of IBD patients. However, recent studies by us and others have shown marked decrease in CrT1 in animal models of IBD and IBD patients. Therefore, determining whether CrT1 dysregulation is a cause or consequence of IBD and elucidating the underlying mechanisms in pre-clinical models are prerequisites to establishing Cr supplementation as an adjuvant therapy for IBD management. Therefore, we hypothesized that creatine deficiency in IECs caused by CrT1 dysregulation is a critical factor contributing to barrier damage, mitochondrial dysfunction, and sustained mucosal inflammation in IBD.

Our studies utilizing a translationally relevant model of gut-derived organoids generated from healthy human subjects and IBD patients to study dysregulated Cr transport in IBD will yield critical novel data on CrT1 regulation. This will unravel a novel facet of IBD pathogenesis, validate Cr supplementation as an effective adjuvant therapy for IBD, and pave the way for developing effective bench-to-bedside long-term care for IBD.

The project will evaluate the efficacy of creatine (Cr) supplementation in alleviating inflammatory bowel disease (IBD)- associated mucosal inflammation, epithelial barrier damage, and mitochondrial dysfunction using pre-clinical models of IBD. Mechanistic studies *in vivo*, and in a translationally relevant model of human intestinal organoids from healthy humans and IBD patients will yield novel information about whether diminished Cr transport into intestinal epithelial cells (IEC) a cause or consequence of IBD is, highlighting novel pathways to be targeted for optimal Cr availability to IEC. Therefore, the critical study outcomes will help design future clinical trials using Cr supplementation as an adjuvant therapy for management of IBD, a debilitating inflammatory disease highly prevalent in West Virginia, and a key risk factor for colorectal cancer.

Project 2: Inflammatory Bowel Disease-associated Microbial Amyloids: A Novel Link Between Gut Inflammation and Dementia

PROJECT SUMMARY: The aging population faces a growing burden of inflammatory bowel disease (IBD) and dementia, two debilitating chronic inflammatory disorders long considered unrelated. Emerging evidence

indicates that older adults with chronic gut inflammation are at increased risk of developing dementia compared with those with healthy gut function. In Appalachia, including West Virginia, hypertension and diabetes are well-recognized comorbidities of dementia; however, despite the rising prevalence of IBD in this region, no systematic studies or meta-analyses have examined IBD as a potential contributor to dementia burden in the Appalachian elderly population. This gap persists in part because dementia, including Alzheimer's disease (AD), has traditionally been viewed as a multifactorial disorder driven by genetics, lifestyle, and central nervous system pathology, whereas the contribution of chronic gut inflammation and microbiota dysbiosis has only recently gained attention. Moreover, the cellular and molecular mechanisms linking IBD to dementia-associated neurodegeneration remain poorly defined. Thus, rigorous mechanistic studies are urgently needed to establish IBD as a key risk factor for dementia in the aging population and to identify novel therapeutic targets.

Emerging evidence suggests that dysbiosis in IBD promotes the expansion of amyloid-producing bacteria, such as *E. coli*, *Salmonella*, and *Pseudomonas*. Indeed, adherent invasive *E. coli* (AIEC) that colonizes the inflamed gut mucosa has been strongly linked to Crohn's disease (CD) pathology. These microbial amyloids, such as curli, can stimulate immune receptors, cross the gut barrier, and cross-seed host amyloid proteins like β -amyloid, initiating neuroinflammation and aggregation pathology reminiscent of AD. These microbial amyloids may therefore represent a novel gut-derived trigger of neuroinflammation and cognitive decline in the elderly. However, in the context of dementia, the mechanisms of how bacteria-produced amyloids in the inflamed intestine cause neuroinflammation and neurodegeneration have not been explored.

Our long-term goal is to utilize *in vivo* animal models and biological samples from dementia patients with and without IBD to elucidate how chronic gut inflammation contributes to neurodegeneration through gut-derived microbial products and to identify which pathways of the microbiota-gut-brain axis (MGBA) are involved in this bidirectional network. As the first step towards this goal, the overall objective of the current project is to establish a novel proof-of-concept that **IBD-associated microbial amyloids can activate neuroinflammatory and amyloidogenic pathways**. The central hypothesis of the pilot project is that gut dysbiosis in IBD increases microbial amyloid production, which enters circulation, activates systemic inflammation, and triggers neurodegenerative pathways in the aging brain, leading to cognitive deficits.

Two **Specific Aims** are designed to accomplish the goal of this project:

Aim 1. Determine how IBD-associated bacterial amyloids drive neuroinflammation and neurodegenerative signaling across the gut-immune-brain axis

Aim 2. Elucidate the mechanisms by which gut-derived microbial amyloids deregulate microglial-neuronal signaling to initiate neuroinflammatory and neurodegenerative pathways using *in vitro* co-culture, and *ex vivo* 3D human brain organoid models

Determining the role of microbial amyloids as a previously underexplored mechanistic link between gut inflammation and neurodegeneration attests novelty to this study. By integrating microbiota, immunology, and neuroscience, the study outcomes will define microbial amyloids as biomarkers of dementia risk in IBD, identify new therapeutic targets for microbiota-based interventions, and establish a transformative paradigm viewing neurodegeneration in the elderly as a systemic, inflammation-driven disorder initiated in the gut.

Dr. Liquan Cai

Assistant Professor

Department of Biomedical Sciences, Joan C. Edwards School of Medicine

Marshall University

Email: cail@marshall.edu

Phone: 304-696-5505

Muscle wasting or atrophy afflicts elderly people and patients with chronic diseases such as chronic kidney diseases (CKD). An effective treatment is lacking, but stem cell-based therapy for tissue regeneration is a promising strategy. Our group has discovered a new cellular mechanism through the membrane Na^+/K^+ -ATPase (NKA) receptor function in muscle stem cells known as satellite cells. To investigate NKA signaling as a novel strategy to prevent or slow muscle loss, we implement *in vivo* (mutant mice) and *in vitro* (human induced pluripotent stem cells, hiPSCs) modeling systems.

hiPSCs are utilized in our study as a clinically relevant cell of human origin with the potential to differentiate into skeletal muscle, providing a platform to recapitulate the muscle regeneration process observed in CKD patients. This system is helpful to obtain detailed mechanistic insight into NKA myogenic pathway, at the cellular and molecular levels, using CRISPR gene editing, live-cell imaging and single-cell RNA sequencing. The findings will pave the way for developing a therapy to rejuvenate the muscle stem cells in human chronic diseases. Mouse strains carrying genetic mutations of NKA receptor functions and subjected to nephrectomy (PNx) are used to recapitulate CKD. Interns will learn to measure muscle regeneration in these PNx mice following cardiotoxin injection into tibialis anterior (TA) muscles, followed by functional assessment (grip-strength test), histology, cell and molecular analyses.

Yen On Chan

Postdoctoral Fellow

Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755.

chany@marshall.edu

Description of Research

My research primarily focuses on Bioinformatics analysis, computational pipeline development, and web development. For Bioinformatics analysis component, I have performed bulk and single nucleus RNA-seq analyses using various tools and packages on a few projects and achieve successful journal publications. These projects include (1) studying the effects of exosomes in 3D-blood-brain barrier spheroid model of children with obstructive sleep apnea and with or without neurocognitive deficits as well as (2) identifying the key driver genes and learning the underlying molecular mechanisms related to Monocarboxylate Transporter 2 (MCT2) in the context of tumor progression in mouse model.

Besides that, I also have experience in running computational tools on high performance computing environment to analyze large-scale genomics data in the range from Gigabytes to Terabytes. Since Bioinformatics analyses with big data are typically time consuming and involve delays between sequential commands, we also developed pipelines by integrating and streamlining these tools to automate execution and optimize runtime efficiency. With such approach, time consumption, configuration complexity, and human attention and supervision can be greatly reduced. Successful project history in pipeline development includes SnakyVC variant calling pipeline, Allele Catalog pipeline, and Phenotype Distribution pipeline.

In terms of web development, I have developed Allele Catalog Tool, Genomic Variation Explorer, and Phenotype Distribution Tool with integration to the Soybean Knowledge Base (SoyKB) and Knowledge Base Commons (KBCommons) frameworks. The Allele Catalog Tool offers unique allele grouping and accession summarization for users to explore the alleles in genes. The Genomic Variation Explorer links mutations in promoter and copy number variations to phenotypes, while the Phenotype Distribution Tool allows users to explore phenotype distributions in allele combinations to pinpoint causative mutations.

Keywords:

Single-cell RNA-seq Analysis, Bulk RNA-seq Analysis, Large-Scale Genomic Data Analysis, High Performance Computing, Variant Calling, Web Development, Web Automation, Web-Based Backend Task Execution

Available Projects

1. Immune profile differences exploration for SA41BBL, 3H3, and Naïve mice using single cell RNA-seq analysis method
 - a. Students will learn to use Cell Ranger for alignment and generating feature counts, Seurat for finding cell clusters, SCSA and SingleR for cell type annotations, ClusterProfiler for enrichment analysis, CellChat for cell-cell communication analysis, and Slingshot for trajectory and pseudotime analysis.
2. Large scale variant calling and analysis for large scale genomic plant or animal data
 - a. Students will learn to use Burrows Wheeler Aligner (BWA) for alignment, Samtools and Bcftools for analysis, Genomic Analysis Toolkit (GATK) for variant calling, Beagle imputation tool for imputing variants, SnpEff functional effect prediction tool for functional annotations, as well as constructing a pipeline using Snakemake Bioinformatics workflow engine.
3. Automation in web-based tool development for data collection, visualization, and analysis
 - a. Students will learn to use Django REST framework in web development, Celery for backend tasks and automated routine tasks, APIs to collect data from different sources, ggplot2 and plotly packages for data visualization, database for data storing and indexing, and Docker for web deployment.

Dr. Jessica Childs

Assistant Professor

Department of Biomedical Sciences

Joan C. Edwards School of Medicine at Marshall University

Huntington, WV

childsj@marshall.edu

304-696-4840

Relapse remains the central barrier to the successful treatment of substance use disorders (SUD), driven by maladaptive drug-associated memories that are formed during drug use and persist long after abstinence. My research program investigates a brain region called the medial habenula (MHb) as a relapse-specific regulator of cocaine-seeking behavior, with a focus on epigenetic and molecular mechanisms that shape neuronal activity and relapse vulnerability. Epigenetic modulations, including gene regulation via altered chromatin structure and DNA methylation, may function as a persistent “molecular memory” that encodes drug experience and drives vulnerability to relapse.

Project 1. Measuring changes in MHb GABA receptor subunit genes after reinstatement of cocaine-seeking using FACS and RT-qPCR

Overview: This project will analyze changes in the expression of GABA related genes (e.g., *Gabra2*, *Gabrb2*) in medial habenula neurons after reinstatement of cocaine-seeking. MHb neurons will be isolated using cell sorting (FACS), and then gene expression will be probed using reverse transcription quantitative polymerase chain reaction (RT-qPCR).

Techniques & Training: tissue dissociation and cell sorting (FACS), RNA extraction, cDNA preparation, RT-qPCR, statistical analysis, figure generation, models of substance use disorder.

Final Goals: generate data for 2–4 GABA genes, create simple plots comparing control vs reinstatement samples, provide candidate follow-up targets for future causative experiments.

Ideal for: Students who are interested in substance use disorder research, who enjoy hands-on bench work, molecular biology, and translational neuroscience.

Project 2. Measuring changes in MHb GABA receptor subunit genes after reinstatement using RNAscope

Overview: This project will examine where GABA subunit genes are expressed within the MHb, using RNAscope in situ hybridization. The focus will be on spatially quantifying changes in GABA related genes after reinstatement.

Techniques & Training: cryosectioning and tissue preparation, RNAscope / in situ hybridization, imaging with epifluorescence or confocal microscopy, cell counting & semi-quantitative spatial analysis, data presentation & MHb anatomical mapping, models of substance use disorder.

Final Goals: generate labeled tissue images showing localization of 1–2 GABA genes, compare spatial expression patterns between control & reinstatement brains, create a figure-based “MHb GABA map” for symposium presentation.

Ideal for: Students who are interested in substance use disorder research with interests in neuroanatomy, imaging, or microscopy.

Project 3. Using Laser-Capture Microdissection (LCM) to isolate ventral MHb.

Overview: This project focuses on developing a pipeline for isolating the vMHb specifically using Laser Capture Microdissection (LCM). The scientific question centers on establishing tissue integrity and validating the quality of RNA/DNA after microdissection, laying the groundwork for future cell-type–specific molecular analysis.

Techniques & Training: brain slicing and laser capture microdissection (LCM) of vMHb, RNA/DNA isolation and quality control (Bioanalyzer, NanoDrop, qPCR integrity markers), method development & optimization, creating a reproducible LCM protocol for the lab, models of substance use disorder.

Final Goals: a validated step-by-step LCM protocol for MHb, RNA/DNA quality benchmarks (RIN scores or qPCR stability genes), recommendations for future sequencing experiments.

Ideal for: Students who are interested in substance use disorder research and precision neuroanatomy, cutting-edge methods, or molecular neuroscience technique development.

Dr. Piyali Dasgupta

Professor

Department of Biomedical Sciences

Joan C Edwards School of Medicine

Marshall University

dasgupta@marshall.edu

304-696-7321

The following projects are available in my laboratory:

- 1. Anti-cancer activity of nicotinic antagonists in lung cancer:** Smoking bears a strong correlation to the development of a type of lung cancer called lung adenocarcinoma. In our laboratory we study the signaling pathways of how nicotine and NNK (components of cigarettes) promote the growth of lung cancer. Specifically, students working on this project will examine whether compounds which block the effect of nicotine can be useful for lung cancer therapy. Other techniques the students will learn are (i) to measure the effects of nicotine on the growth of human lung cancer cells (ii) to measure the anti-cancer activity of compounds (that inhibit the effects of nicotine) in human lung adenocarcinoma.
- 2. Capsaicin, lung cancer and ovarian cancer:** Capsaicin is the major active ingredient of chili peppers. Preliminary data in our laboratory shows that capsaicin inhibits the growth of human lung cancer and ovarian cancer cells. We are interested in investigating molecular pathways that contribute to this process. We are also trying to identify non-pungent capsaicin analogs with potent growth-suppressive activity in lung/ovarian cancer. If you are interested in this project, you will learn (i) to perform specific assays to determine whether capsaicin can cause cell death in human small cell lung cancer cells (ii) to examine the biochemical mechanisms underlying this growth-inhibitory activity of capsaicin.

TECHNIQUES:

The techniques that are routinely performed in our laboratory:

1. Cell culture techniques
2. Preparation of lysates, nuclear, membrane and cytosolic fractions
3. Assays to study cell growth and cell cycle progression
4. Protocols to measure invasion and angiogenesis.
5. Measurement of protein expression using ELISA.
6. Animal studies: anti-cancer studies on SCID mice models

Price E. Dickson, Ph.D.

Assistant Professor

Department of Biomedical Sciences
Joan C. Edwards School of Medicine
Marshall University
1700 3rd Ave.
Huntington, WV 25703-1104
price.dickson@marshall.edu

Systems genetics and recombinant inbred mouse panels for discovery of the mechanisms driving drug addiction

Drug addiction is a critical public health issue with genetic and environmental causes for which the underlying biological mechanisms remain largely unknown. To uncover these mechanisms, the Dickson Lab uses construct-valid behavioral techniques within the context of a systems genetics approach. Systems genetics using experimental mouse populations enables discovery of novel genetic and genomic mechanisms influencing disease by associating genetic and phenotypic variation. The intravenous drug self-administration paradigm is the gold-standard of volitional drug use assessment in rodents due to its ability to index drug taking and seeking at many stages of drug use including initiation, maintenance, and relapse. Through integration of a systems genetics approach and construct-valid behavioral techniques such as intravenous drug self-administration, novel and unexpected genetic mechanisms underlying the complex psychological phenotype of drug addiction and behaviors that predict drug use and addiction can be discovered.

Students in the Dickson lab can expect to learn about:

- Systems genetics as an approach to biological discovery
- The importance of genetic diversity in the laboratory mouse in the context of systems genetics
- The use of recombinant inbred mouse panels in the context of systems genetics
- Intravenous drug self-administration as an approach to identify biological and psychological mechanisms driving addiction

Chatrawee S. Duangjan Ph.D.

Assistant Professor

The Appalachian Natural Products Research Program

Department of Biomedical Sciences

Joan C. Edwards School of Medicine

Marshall University

304-696-3923

duangjan@marshall.edu

The Appalachian Natural Products Research Program (ANPRP) explores how natural products influence aging, healthspan, and age-related diseases. Using *Caenorhabditis elegans* and Alzheimer's models with A β and tau pathologies, we investigate the neuroprotective effects of bioactive compounds through molecular genetics and pharmacogenetics.

Our translational research spans cultured neurons, *C. elegans*, and human Alzheimer's brain tissue, revealing how natural compounds modulate gene-environment interactions and neurodegenerative pathways. A core focus is identifying bioactive molecules from Appalachian plants with potential applications in aging, cancer, and infectious diseases. By integrating traditional botanical knowledge with modern molecular science, ANPRP aims to develop innovative, natural interventions for healthy aging.

Therapeutic potential of Appalachian Natural Products for cancer and age-related diseases

Lung cancer remains the leading cause of cancer-related death globally, with West Virginia reporting one of the highest incidence rates in the U.S. (76.5 per 100,000). Despite advances in treatment, conventional chemotherapy offers limited survival benefits, underscoring the need for novel therapeutics. The Appalachian region is rich in medicinal plants, many of which are understudied. Investigating their bioactivity may uncover new strategies for cancer treatment and healthy aging. This study evaluates the anticancer and antioxidant properties of crude extracts from ten native Appalachian plants including Lousewort, Teasel, Garlic mustard, Ground ivy, American water willow, Poison hemlock, Wingstem, Common milkweed, Evening primrose, and Wild ramp. Among the tested plants, Teasel (*Dipsacus laciniatus*) and Lousewort (*Pedicularis lanceolata*) exhibited significant cytotoxicity against A549 human lung carcinoma cells. Teasel extracts also demonstrated strong antioxidant activity via ABTS and DPPH assays.

To further explore therapeutic potential, we will assess Teasel's effects on oxidative stress resistance and longevity using *Caenorhabditis elegans*. Outcomes will include survival under oxidative stress, ROS levels, pharyngeal pumping, lipofuscin accumulation, and lifespan. Molecular mechanisms will be elucidated through transcriptomic and proteomic profiling, with machine learning used to identify key signaling pathways and pro-apoptotic targets. Western blotting will validate these findings.

Phytochemical characterization will be performed using GLC-MS and HPLC, and AI-based modeling will predict structure-activity relationships of bioactive compounds. This research aims to uncover novel therapeutic agents from Appalachian plants, advancing strategies for lung cancer treatment and healthy aging.

Dr. Brandon Henderson

Assistant Professor

Department of Biomedical Sciences

Joan C. Edwards School of Medicine at Marshall University

Huntington, WV

Hendersonbr@marshall.edu

304-696-7316

www.hendersonlab.org

Examining the effect of flavors on vaping-related behaviors

While nicotine is the primary addictive component of all tobacco and vaping products, flavor additives have now been found to alter the neurons that are critical for addictive behaviors. As the use of electronic cigarettes continue to grow, it is critical that we understand how all constituents of vaping e-liquids effect the neurons that mediate addiction. The Henderson lab directly studies how nicotine and flavors trigger addiction. We use mice that are trained to use vaping devices to model human smoking and vaping behaviors. In these experiments we directly study how combining flavors with nicotine can increase drug reinforcement and vaping initiation. We then conduct follow-up experiments to examine changes in neurobiology and neurophysiology. These include the use high-powered fluorescence microscopy to examine structural changes in the dopamine neurons that play a major role in addiction neurocircuitry and electrochemistry to examine functional changes in the release of dopamine in the brain. Together, these experiments allow us to determine how entire brain circuits are modified by vaping constituents and trigger changes that reinforce vaping-related behaviors. For more information, visit the Henderson lab website: www.hendersonlab.org

Dr. Jung Han Kim

Professor

Department of Biomedical Sciences

Marshall University School of Medicine

kimj@marshall.edu

(304) 696-3873

Genetics of Obesity, Type 2 Diabetes, and Hyperlipidemia

My research interest is in understanding the etiology and pathogenic mechanisms underlying type 2 diabetes, obesity, and hyperlipidemia, which have strong implications for cardiovascular diseases (CVD). Type 2 diabetes is the most common form of human diabetes, accounting for over 90% of cases and obesity at such epidemic proportions creates serious public health problems. The prevalence of atherogenic dyslipidemia including hypercholesterolemia has increased considerably. Atherogenic dyslipidemia is causally linked to the development and progression of atherosclerotic CVD. There is substantial evidence demonstrating that genetic factors are strongly involved in the development of type 2 diabetes, obesity, and hyperlipidemia, and I have focused my attention on the link between gene dysfunction and these diseases and its interaction with diets. As an internship project in our laboratory for the Summer Research Program, I propose to study candidate genes and pathways for diabetes, obesity, and hyperlipidemia loci identified in a genetic mouse model and their interactions with diets. This study will ultimately provide ready targets for the disease therapies in humans. Experimental methods involved in this internship research will include enzyme-linked immunosorbent assay, colorimetric assay, polymerase chain reaction (PCR), western blot analysis, real-time quantitative PCR, body composition analysis, and indirect calorimetry. DNA, RNA and protein will need to be isolated from mouse tissues. Instruments involved in this project include gel electrophoresis, western blotting apparatus, microplate readers, spectrophotometer, imaging system, thermal cyclers, EchoMRI, and comprehensive lab animal monitoring system.

Dr. Trupti Joshi, MBBS, ADB, MS, Ph.D.

Senior Associate Dean for Informatics and Population Analytics

PI West Virginia (WV) INBRE

Professor - Department of Biomedical Sciences

Joan C Edwards School of Medicine

Marshall University

Arthur Weisberg Family Applied Engineering Complex, Suite # 4101

1676 Third Avenue, Huntington, WV 25755

JoshiTr@marshall.edu

(O) 304-696-4810

<https://joshi-tbailab.org/>

At the Joshi Translational Bioinformatics and AI Innovations Lab (TBAiL), our expertise is in the areas of translational bioinformatics, computational methods and AI based solutions development and its application to biomedical sciences, plants sciences, animal sciences, and health informatics fields. We have published more than 175 scientific papers in peer reviewed and indexed journals as well as developing several bioinformatics software systems, computational methods and AI based solutions for translational research.

Our lab's current research focuses primarily on **(i)** building knowledge base frameworks such as KBCommons and SoyKB, for genomics and multiomics data integration in biomedical and agricultural domains, **(ii)** development of computational methodologies and multiomics data analysis pipelines using HPC and cloud based resources, **(iii)** multiomics data integration methods, **(iv)** deep learning and machine learning methods for biomarker identification, **(v)** IMPRes algorithm for *in silico* hypothesis generation using multiomics data, **(vi)** designing AI based methods and solutions for single-cell transcriptomics cell type annotations and phenotype prediction and **(vii)** application of translational bioinformatics techniques towards advances in precision medicine, precision agriculture, and genomic epidemiology including Covid.

Our research work involves development of automated workflows for data analytics, database and web-based framework and portal development, computational methods development for predictions as well as new AI based approaches for data integration and inferences. Our lab has several projects funded by NIH, NSF, DOE, MDHSS and other funding agencies, that we actively work on. **Some of the resources, frameworks and methods developed by the lab are as listed below:**

Biomedical Diseases Applications

- [Knowledge Base Commons](#) (KBCommons)
- [G2PDeep](#) (deep learning method for phenotype prediction)
- [IRnet](#) (immunotherapy response prediction)
- [CIR](#) (cancer ommunoprevention resource)
- [CrossMP](#) (Cross-Modality translation between scRNA-Seq and scATAC-Seq)
- [IMPRes](#) (Integrative Multiomics Pathway Resolution)

Genomic Epidemiology Applications

- Covid Portal: <https://dataportals.missouri.edu/SARSCoV2>
<https://kbcommons.org/system/browse/msphl/index/SARSCoV2>

Plant Science Research Applications

- [Soybean Knowledge Base \(SoyKB\)](#)
- [B5 Data Nexus](#)
- [Omics Verse](#)
- [scPlantAnnotate](#) (plant scRNAseq cell type annotation)

Students participating in these projects will gain hands-on experience in learning basic informatics techniques, linux systems, R, Python, Jupyter notebooks, coding, mySQL, software and web design. They will also utilize and get familiar with running different bioinformatics tools in high performance computing (HPC) and cloud

computing environments. Those interested in advanced coding will have the opportunity to contribute to algorithm development and developing models for predictions using machine learning, deep learning and other similar approaches.

Dr. Abdelnaby Khalyfa

Professor of Biomedical Sciences

khalyfa@marshall.edu

(304) 696-3674

Comparative Cellular Responses to Sustained vs. Intermittent Hypoxia in Coronary Artery and Cardiac Microvascular Endothelial Cells

Background: Cardiovascular diseases remain the leading cause of death globally, and hypoxia is a common pathological feature in many of these conditions. Two distinct forms of hypoxia—sustained hypoxia (SH) and intermittent hypoxia (IH)—can affect the heart in markedly different ways. SH is typically associated with chronic ischemic conditions such as coronary artery disease, where oxygen deprivation is prolonged. In contrast, IH occurs in conditions like obstructive sleep apnea (OSA), where cycles of low and normal oxygen lead to repeated cellular stress.

The endothelial cells lining coronary arteries and the cardiac microvascular endothelial cells (CMECs) are especially susceptible to changes in oxygen availability. These cells regulate vascular tone, angiogenesis, and inflammatory responses, all of which are altered under hypoxic conditions. However, the cell-specific effects of IH versus SH, particularly in coronary and microvascular cardiac cells, are not well defined. This research will help clarify how different hypoxic patterns influence vascular inflammation, oxidative stress, apoptosis, and angiogenic signaling in heart-associated endothelial cells.

Hypothesis: We hypothesize that intermittent hypoxia induces a more pronounced inflammatory and oxidative stress response in coronary and cardiac microvascular endothelial cells compared to sustained hypoxia, while sustained hypoxia may trigger greater cellular apoptosis and dysregulation of angiogenic genes.

Objectives:

1. To compare cell viability and apoptosis in coronary artery endothelial cells (HCAECs) and cardiac microvascular endothelial cells (CMECs) exposed to SH and IH.
2. To evaluate inflammatory and oxidative stress markers under both hypoxic conditions.
3. To assess the expression of angiogenic and hypoxia-responsive genes (e.g., HIF-1 α , VEGF-A, ANGPT2).

Methods

Cell Types:

Human Coronary Artery Endothelial Cells

Human Cardiac Microvascular Endothelial Cells

Experimental Conditions:

Control: Normoxia (21% O₂)

Sustained Hypoxia (SH): Constant exposure to 1% O₂ for 24 or 48 hours.

Intermittent Hypoxia (IH): Cycles of 1% O₂ for 1 hour followed by 21% O₂ for 3 hour, 24 or 48 hours.

Assays and Analysis:

Endpoint

Cell Viability MTT or CellTiter-Glo assay

Apoptosis Caspase-3/7 activity assay; TUNEL staining

Oxidative Stress DCFDA assay for ROS generation

Inflammatory Cytokines ELISA and qPCR for IL-6, TNF- α , ICAM-1

Angiogenic & Hypoxia Markers qPCR and/or Western blot for HIF-1 α , VEGF-A, ANGPT2

Mitochondrial Function (optional) Seahorse XF Analyzer for OCR/ECAR

Each condition will be run in triplicate, and time-course analysis will allow us to distinguish early vs. late cellular responses.

Expected Results: IH is expected to elicit stronger inflammatory and ROS responses due to repeated oxygen fluctuations. SH may lead to more extensive apoptosis due to prolonged oxygen deprivation. Both hypoxic conditions may alter angiogenic gene expression, but the profiles will differ depending on cell type and exposure pattern.

Significance and Future Directions: This study will help clarify how different hypoxic stress patterns shape endothelial function in the heart, contributing to conditions like atherosclerosis, microvascular dysfunction, and heart failure. The results could support further research into targeted therapies for diseases linked to sleep apnea or ischemia by identifying differential signaling pathways triggered by IH vs. SH. Moreover, this project will provide valuable hands-on experience in cardiovascular cell biology, hypoxia research, and molecular techniques, aligning well with the WV-INBRE goal of preparing undergraduates for careers in biomedical research.

Wei Li, M.D., Ph.D. FAHA

Associate Professor

Department of Biomedical Sciences

Joan C. Edwards School of Medicine

Marshall University

1 John Marshall Drive, Huntington WV 25701

Phone: 304-696-7342

Email: liwe@marshall.edu

<https://jcesom.marshall.edu/research/office-of-research-and-graduate-education/research-faculty/biomedical-sciences/wei-li/>

Project 1. Explore thymidine phosphorylase (TYMP)'s role in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and atherogenesis.

Obesity is a major independent risk factor for metabolic dysfunction-associated steatotic liver disease (MASLD), type 2 diabetes (T2DM), cardiovascular disease (CVD), and some cancers. Dysregulated lipid metabolism and chronic inflammation as well as epigenetic changes have been recognized as key contributors to the development of obesity and atherogenesis. TYMP is an enzyme in the pyrimidine salvage pathway. Our recent study revealed that TYMP possesses signaling functions and is essential for platelet activation and thrombosis, suggesting that TYMP has unknown functions. This project is to explore TYMP's role in regulating glycolysis, lipid metabolism, obesity, fatty liver disease, and atherogenesis. Interns participating in this project will have opportunities to learn TYMP's role in obesity-associated complications.

Project 2. Explore the role of sodium/potassium ATPase alpha 1 subunit in thrombosis.

Our ongoing studies demonstrated that **sodium/potassium ATPase alpha 1 subunit haplodeficiency** significantly prolonged the time to form an occlusive thrombus in mice. This phenotype was only found in males but not in females, suggesting sex hormones may play a role. This project will test the hypothesis that cross-talk between sex hormones and NKA $\alpha 1$ plays a critical role in regulating platelet activity and thrombosis. Interns participating in this project will have opportunities to learn platelet and plasma isolation, platelet function assay, and in vivo thrombosis models.

Tim Long, Ph.D.

Associate Professor

Pharmaceutical Science and Research
Marshall University School of Pharmacy
One John Marshall Drive
Huntington, WV 24755

office: Stephen J. Kopp Hall 335

tel: 304-696-7393

fax: 304-696-7309

email: longt@marshall.edu

website: <https://mupages.marshall.edu/sites/longlab/>

My lab in the Marshall University School of Pharmacy is focused on discovering new treatment strategies for multi-drug resistant infections. We are currently investigating the repurposing potential of disulfiram (Antabuse) to treat vancomycin-resistant *Staphylococcus aureus* and fluconazole-resistant *Candida* infections. In *S. aureus*, it was discovered that disulfiram is able to lower the minimum inhibitory concentration (MIC) of vancomycin to increase its susceptibility to this first-line antibiotic for MRSA infections. Mechanistic studies have revealed that disulfiram functions as an antimetabolite and this action may counteract the vancomycin-resistance mechanism in *S. aureus*. In *Candida*, disulfiram was found to be a fungicidal agent and have synergism with copper, but through a fungistatic mechanism. The contrasting mechanisms are also being investigated. Researchers who work in the lab will learn techniques to evaluate antimicrobial synergy via the checkerboard assay and time-kill studies. Researchers will further use plate readers, HPLC, PCR and flow cytometer conduct mechanistic experiments.

Yongke Lu, PhD

Associate Professor

Department of Biomedical Sciences

Joan C. Edwards School of Medicine

Marshall University

1 John Marshall Drive, Huntington WV 25701

luy@marshall.edu

Peroxisomes and metabolic liver disease

Chronic alcohol and high fat diet consumption may cause metabolic liver disease designated alcohol-related liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), respectively. Both ALD and NAFLD range from simple steatosis (fatty liver) to steatohepatitis (liver inflammation), fibrosis and cirrhosis, and even liver cancer. Fatty liver is benign, but it is sensitive to developing to advanced liver disease like fibrosis, cirrhosis and liver cancer. Impaired fatty acid oxidation is one of major reasons for the development of fatty liver. Fatty acids are mainly oxidized in mitochondria, but they can also be oxidized in peroxisomes. Usually, very long chain or side chain fatty acids are metabolized in peroxisomes, and the resultant short chain fatty acids will be further oxidized in mitochondria. Peroxisomal fatty acid oxidation is regulated by a transcriptional factor peroxisome proliferator activated receptor α (PPAR α), and PPAR α agonist WY-14,643 can induce peroxisome proliferation, which enhance peroxisomal fatty acid oxidation, and ameliorate alcoholic fatty liver. We are examining how peroxisome proliferation influences the development of metabolic fatty liver disease in mouse models.

Zhen Lyu, Ph.D.

Postdoctoral Fellow

Department of Biomedical Sciences
Joan C. Edwards School of Medicine
Marshall University
Huntington, WV
lyuz@marshall.edu

My research focuses on applying computational and bioinformatics approaches to analyze and interpret high-throughput sequencing data. Specifically, I work on applying established pipelines to real datasets for **bulk RNA-Seq differential expression analysis** to identify key genes and pathways, **microbiome studies** to explore microbial composition and its functional impact, and **multiomics integration** to uncover complex relationships across genomics, transcriptomics, and metabolomics.

Project #1 Omics Differential Expression Analysis

This project focuses on applying computational and bioinformatics approaches to analyze high-throughput sequencing data. We conduct bulk RNA-Seq, genomics, epigenomics, proteomics, metabolomics, single cell and spatial transcriptomics analyses for diverse organisms, including human, mouse, other animals, as well as plant such as *Arabidopsis thaliana*, soybean, tomato, rice etc. These projects aim to identify significant differentially expressed genes and uncover key pathways involved in biological processes. Beyond analysis, I create informative visualizations, including complex hierarchical heatmaps with annotations, volcano plots, and PCA analyses to assess sample clustering and group separation.

Students participating in these projects will gain hands-on experience in bioinformatics pipelines, including data processing, quality control, statistical analysis, and visualization.

Project #2 Gut Microbiota Microbiome Analysis

This project focuses on profiling gut microbiota composition and diversity across samples. QIIME 2 is used for quality control, taxonomic assignment, and calculation of alpha and beta diversity metrics to assess microbial richness and community structure. LEfSe (Linear Discriminant Analysis Effect Size) identifies differentially abundant taxa as potential biomarkers, while PICRUSt2 predicts the functional potential of microbial communities based on 16S rRNA gene data.

Through this project, students gain hands-on experience in microbiome data analysis, statistical testing, visualization of complex datasets, and functional interpretation of microbial communities.

Project #3 Multi-Omics Data Integration

This project focuses on integrating multiple omics datasets, such as transcriptomics, proteomics, and metabolomics, to gain a comprehensive understanding of biological systems. MixOmics is used to perform multivariate analyses, identify correlations across different data types, and uncover key features driving biological variation. By combining datasets, the project enables the discovery of molecular interactions, regulatory networks, and biomarkers that may not be apparent from single-omics analyses.

Students involved in this project gain experience in data integration, statistical modeling, visualization of complex multi-dimensional datasets, and interpretation of cross-omics relationships.

Balasubramanian Palaniappan, Ph.D.

Assistant Professor

Dept. of Biomedical Sciences, Joan C. Edwards School of Medicine

Marshall University

palaniappan@marshall.edu

304-696-3009

Background

Obesity is a major health epidemic in the United States, particularly in regions like Central Appalachia and West Virginia, with rates around 41%. It is characterized as a state of chronic subclinical systemic inflammation, which increases the risk for various metabolic disorders and diseases, including inflammatory bowel diseases (IBD) such as Ulcerative colitis (UC) and Crohn's disease (CD). Notably, 20-40% of adult and pediatric IBD patients are overweight or obese.

In obese individuals, gut microbiota dysbiosis is associated with chronic low-grade inflammation and an increased prevalence of a leaky gut. The normal function of the mammalian colon, primarily involving NaCl and water absorption, is mediated by coupled epithelial transporters SLC26a3/downregulated in adenoma (DRA) and Na+/H⁺ exchanger (NHE3). In chronic conditions like UC, the functional expression of DRA is often inhibited. Pro-inflammatory mediators, including inducible nitric oxide (iNO) produced by inducible nitric oxide synthase (iNOS), have been shown to affect epithelial transport functions, impairing intestinal nutrient and electrolyte absorption as well as epithelial barrier integrity. In obesity, visceral adipose tissue is a major source of these inflammatory mediators.

Project 1: Elucidating the Mechanism of Obesity-Mediated DRA Dysregulation

Mutations in the DRA gene are associated with severe diarrheal diseases resulting from disrupted colonic electrolyte transport. DRA expressions and functions are known to be regulated by various inflammatory mediators, including interleukins (ILs), TNF- α , INF- γ , and iNO. As a crucial signaling molecule and immune-inflammatory mediator, nitric oxide (NO) plays a key role in the pathogenesis of inflammation, with iNOS implicated in numerous chronic inflammatory diseases. Inhibition of iNOS has been shown to reduce inflammation and tissue damage, suggesting its critical role as an inflammatory mediator. Previous research indicates that iNOS inhibition restores glucose and NaCl dysregulation in IBD models. Preliminary data from our lab indicate that significant decrease in DRA in the distal colon during obesity, suggesting impaired net NaCl absorption.

Hypothesis: Obesity-driven iNOS dysregulates DRA expression, contributing to impaired colonic electrolyte transport.

Project 2: The Role of iNOS in Compromised Colonocyte Barrier Integrity

Tight junctions (TJ) are crucial for regulating epithelial barrier function and paracellular permeability. Obesity and excessive dietary fat intake can lead to the dysregulation of TJ protein expression by modulating inflammatory signaling pathways. An elevated level of inflammatory mediators like iNOS found in obese individuals is a key link between obesity, gut permeability, and inflammation. Overexpression of iNOS not only dysregulates NaCl homeostasis but also weakens the epithelial barrier integrity. Experimental evidence confirms that elevated iNOS expressions during inflammation disrupt TJ proteins, and pharmacological inhibition can reverse this effect.

Hypothesis: The obesity-associated pro-inflammatory mediator, iNOS, impairs the barrier integrity of colonocytes.

Experimental Methods

These research projects will utilize various experimental methods, including:

- In vitro cell culture
- Transepithelial electric resistance (TEER) measurements
- Western blot analysis
- Immuno-cytochemistry utilizing Imaging systems
- Real-time quantitative PCR
- Protein and RNA isolation and quantitation using Colorimetric and nanodrop spectrophotometers

Marco Pessoa, Ph.D.

Assistant Professor

Department of Biomedical Sciences

304-696-3832

correapessoa@marshall.edu

Arthur Weisberg Family Applied Engineering Complex

1676 3rd Ave. Room 4115

Huntington, WV - 25703

www.marshall.edu

Project Overview

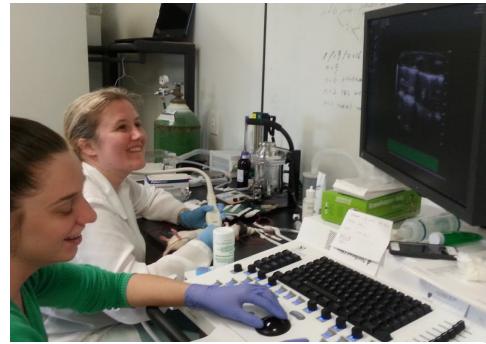
Myocardial infarction (MI), commonly known as a heart attack, is a leading cause of sudden cardiac death and heart failure worldwide. Aging significantly increases the risk of MI due to cumulative vascular damage, reduced regenerative capacity, and higher susceptibility to other health conditions. Despite major advances in cardiovascular medicine, current treatments often fail to preserve heart tissue or prevent harmful remodeling after an MI, highlighting the urgent need for innovative therapies. Stem cell-based approaches have emerged as a promising strategy to repair damaged heart tissue, promote new blood vessel formation, and restore heart function.

What You Will Work On

Our research focuses on improving stem cell therapy by using the signaling function of the Na^+/K^+ -ATPase to “metabolically precondition” cardiac progenitor cells (CPCs) before transplantation. These CPCs are derived from human induced pluripotent stem cells (hiPSCs) and treated with specific Na^+/K^+ -ATPase ligands to activate signaling pathways that enhance their oxidative metabolism. Preconditioned CPCs are then transplanted into the hearts of immunodeficient mice that have undergone MI surgery via left anterior descending artery ligation.

Interns will gain hands-on experience with cutting-edge techniques, including cell culture, RT-qPCR, immunocytochemistry, western blotting, and Seahorse metabolic analysis for *in vitro* studies. For *in vivo* work, you will observe and assist with survival surgeries, echocardiography, imaging, histology, and immunostaining to evaluate cell engraftment and heart function. This project offers a unique opportunity to learn advanced methods in regenerative medicine and contribute to developing next-generation therapies for heart disease.

Dr. Sandrine V. Pierre


Professor of Biomedical Sciences

Coordinator, Cell Biology Research Cluster

304.696.3505

pierres@marshall.edu

The Pierre lab studies specific intracellular pathways involved in the integrated response of the myocardium to hemodynamic and metabolic disturbances. Our goal is to develop new paradigms to therapeutically address cardiovascular diseases based on the Na/K-ATPase receptor function. We examine these issues by combining techniques of molecular and cell biology with *ex-vivo* (biochemistry and cell physiology, isolated heart perfusion, primary cardiac cell cultures, histology) and *in-vivo* assessments of cardiac function in genetically altered mice (echocardiography, measurement of blood pressure by tail-cuff and telemetry, cardiac and vascular catheterization). Interns will be exposed to pre-clinical models and key techniques that are currently available to biomedical researchers to study cardiac and renal diseases.

Echocardiographic assessment of rodent cardiac function by Dr. P. Marck and undergraduate fellow A. Bryant.

Project “Cardioprotection by Na/K-ATPase Ligands in Uremic Cardiomyopathy”

Rationale: Uremic cardiomyopathy is a chronic incurable illness in patients with chronic kidney disease. A greater and broader protection must be achieved to face the unmanageably high morbidity and mortality rates amidst the exploding incidence and prevalence of the condition worldwide. Targeting the Na^+/K^+ -ATPase receptor function may lead to novel interventions.

Methods: Using unique mouse genetic models, the effectiveness of new ligands will be tested *in vivo* following experimentally induced kidney disease by 5/6 nephrectomy. In addition to functional echocardiographic assessments, the INBRE fellow will conduct morphometric and histological studies as well as biochemical (western blot) and qPCR evaluation of fibrosis, inflammation, and hypertrophy markers.

Dr. Gary O. Rankin

Professor and Chair of Biomedical Sciences
Vice Dean for Basic Sciences
Joan C. Edwards School of Medicine
Marshall University
rankin@marshall.edu
(304) 696-7319

The following projects are available in my laboratory:

Project #1: Chloroanilines are commonly used chemical intermediates in the manufacture of dyes, drugs, agricultural herbicides and fungicides and thousands of other products. Exposure to a chloroaniline can result in a number of toxicities including toxicity to the blood, liver and kidney. This project seeks to determine the chemical species (parent compound or metabolite) responsible for liver and kidney damage and the mechanism by which toxicity occurs.

Project #2: Halogenated benzenes and phenols are common intermediates in the synthesis of a wide range of commercial products and appear as environmental pollutants in many parts of the world. Many of these compounds and/or their metabolites target the kidney and can induce kidney injury. This project will examine the nephrotoxicity induced by these compounds, examine structure-toxicity relationships as well as mechanisms by which these important chemicals harm the kidney.

Assays and Instrumentation: Projects that will investigate nephrotoxicity will use in vitro assays that involve isolation of rat kidney cells, measurement of enzyme release from treated and control cells, and potentially, the measurement of cellular ATP levels and other mitochondrial functional parameters. Additional techniques may involve Western blotting, quantifying urinary contents (protein, glucose), and measuring blood urea nitrogen and glucose levels. Instrumentation will primarily involve the use of balances, centrifuges, and UV-visible spectrophotometers. High pressure liquid chromatography and thermocycler use is also possible.

Dr. Louise Risher

Associate Professor of Biomedical Sciences
Joan C. Edwards School of Medicine
Marshall University
risherl@marshall.edu
(304) 696-3894

Our laboratory is interested in understanding how adolescent binge drinking influences brain function and contributes to the development of alcohol use disorder. Using a rodent model of adolescent binge drinking, our laboratory and others have demonstrated that there are acute and long-term changes to neuronal structure, function, and behavior across multiple cognitive domains.

Over the last few decades, it has become apparent that non-neuronal cells called astrocytes which outnumber neurons and ensheathe many neuronal connections, play an important role in synapse formation, synapse maintenance across the life-span, and synaptic recovery following injury. However, how astrocytes contribute to neuronal and synaptic remodeling following ethanol exposure is not fully understood. Understanding how astrocytes contribute to the long-term effects of adolescent binge drinking in a rodent model is crucial for understanding the impact that underage alcohol exposure can have on the adult brain and how early onset drinking may contribute to the development of alcohol dependence later in life.

We have three ongoing projects: 1. Investigating the acute and long-term effects of binge drinking on astrocyte function. 2. Investigating the role of astrocytes in the development of addiction. 3. Investigating how changes in astrocyte function following adolescent binge drinking influence recovery from secondary injury later in life, e.g., following traumatic brain injury. Techniques used to answer these questions include: intracranial survival surgery for injection of adenoassociated viruses and insertion of optic fibers for optosensors to evaluate calcium and neuro/gliotransmitter release, immunohistochemistry, Western blot, qPCR, neuronal-astrocyte primary co-culture, confocal microscopy, 3D morphometric analysis of astrocytes, and a battery of behavioral paradigms including conditioned place preference, fear conditioning, open field, social interaction, and plus maze

Dr. Travis Salisbury

Associate Professor

Department of Biomedical Sciences

Marshall University School of Medicine

salisburyt@marshall.edu

304/696-7314

Obesity increases the risk for 10 different cancers including breast cancer. We have shown that adipose tissue from the breast tumor microenvironment releases factors that induce signaling in breast cancer cells that stimulates cancer cell migration and invasion. We are investigating the signaling mechanisms by which obesity associated secreted factors stimulate breast cancer cell migration and invasiveness. We hypothesize that the primary pathway involved is the mTOR pathway. Students in my lab would have the opportunity to study these questions in several lines of human breast cancer cells. Our methods are largely molecular biology based; therefore, students would have the opportunity to use real time PCR machines, electrophoresis equipment, and laminar flow tissue culture hoods. Students will also have a choice as to what technique they would like to learn during their internship. Techniques in lab will include, but are not limited to, real-time PCR, western blot, chromatin immunoprecipitation analysis, interfering RNA approaches to gene knockdown and proliferation assays.

Nalini Santanam, Ph.D., M.P.H., F.A.H.A.

Professor

Department of Biomedical Sciences

Department of Cardiology (Medicine)

Director, Cardiovascular Disease Research Cluster

Joan C Edwards School of Medicine at Marshall University

1700 3rd Ave, 435S BBSC

Huntington, WV 25755

Tel: (304) 696-7321

Email: santanam@marshall.edu

The following projects are ongoing in my laboratory:

Project 1: Alzheimer's disease, aging, and obesity: Does obesity increase the risk of Alzheimer's disease?

This study will test the effects of obesity on cognitive function. Changes to the brain mitochondrial function will also be studied.

Project 2: Vaping and exercise: Vaping is highly rampant among young individuals. This study will test the effects of vaping on the heart. This study will also test whether exercise can help these individuals from some of the harmful effects of vaping.

Project 3: Heart fat and health: Obesity is very high in West Virginia. There are several fat tissues in the body, including the one that is in or around the heart. We are studying heart fat from patients to understand its role in cardiovascular disease.

Project 4: New non-addictive pain medications: Millions of individuals suffer from chronic pain. The current treatments that they are provided are not effective. Our lab is researching alternatives to the current medications for pain.

Dr. Yevgeniy Shakirov

Associate Professor

Department of Biological Sciences, College of Science;

Department of Biomedical Sciences, Joan C. Edwards School of Medicine,

Marshall University, BBSC-241M

Email: shakirov@marshall.edu

Phone: 304-696-8840

Our research interests focus on telomeres, the evolutionarily conserved protein-DNA complexes that cap linear eukaryotic chromosomes, promote genome maintenance and regulate cellular lifespan. Telomere length shortens with each somatic cell division and is often viewed as the most accurate cellular marker of biological age. Proper maintenance of telomere length has important implications for aging, stem cell-related diseases and cancer. Although considerable variation in mean telomere length exists in yeast, plants and humans, mechanisms underlying telomere length homeostasis are largely unknown

Project 1. Genetic and epigenetic architecture of natural telomere length variation.

The main objective of current research in the lab is to elucidate the genetic and epigenetic causes of telomere length variation using the genetically facile plant *Arabidopsis thaliana* as a model. To achieve this goal, we use a plethora of cutting edge natural variation resources available for this organism and a collection of powerful molecular, genomic and epigenetic tools. We recently identified a major effect QTL that explained 48% of telomere length variation in recombinant inbred *Arabidopsis* populations, with the underlying natural polymorphism mapping to the NOP2A gene. Mutations in mammalian NOP2 orthologs lead to uncontrolled proliferation of cancer cells, and their expression serves as a prognostic marker of tumor development. INBRE program participants will work with laboratory personnel on understanding the role played by NOP2A and other genes in telomere length control. Our studies will have an impact on understanding genetic differences in telomere length between individuals and populations, and may provide novel insight into the molecular basis for different rates of aging and predisposition to telomere-associated stem cell, cancer and age-related diseases.

Project 2. Analysis of the interplay between telomere biology and ribosome biogenesis.

We have recently identified several components of rRNA maturation machinery, including RPL5, that impact species-specific telomere length set point in plants. Interestingly, human *RPL5* inhibits tumorigenesis, and its inactivation is the most common (11-34%) somatic ribosomal protein defect in multiple tumor types. Indeed, important similarities exist between human diseases known as telomeropathies and ribosomopathies, and our findings argue that components of rRNA maturation machinery may impact species-specific telomere length set point across eukaryotic evolution. IMBRE participants will work with mutants of ribosome biogenesis genes in plants to uncover specific mechanisms linking telomeres with ribosome biogenesis.

All participants will receive training in molecular cloning, RNA, DNA and protein analysis, aspects of genetic manipulations and bioinformatics.

Vaibhav Sidarala, Ph.D.

Assistant Professor

Department of Biomedical Sciences
Joan C. Edwards School of Medicine
Marshall University
sidarala@marshall.edu

Control of pancreatic β -cell physiology by mitochondrial dynamics

Pancreatic β -cells are specialized endocrine cells responsible for insulin secretion to maintain glucose homeostasis. Mitochondrial function is crucial for glucose metabolism that generates ATP and metabolic signals necessary for insulin granule exocytosis. In addition to physiological function, compensatory β -cell expansion and enhanced secretion ensure normoglycemia in obese insulin-resistant states. Failure of such compensatory mechanisms results in the onset of type 2 diabetes (T2D) in obese individuals. While the precise mechanisms are unclear, recent studies have indicated abnormalities in mitochondrial structure and function in human T2D β -cells.

Mitochondria are interconnected organelles capable of regulating their structure by fusion-fission events, collectively referred to as mitochondrial dynamics. Impairments in fusion (Mfn1, Mfn2, Opa1) and fission (Drp1) protein function result in abnormal mitochondrial structures, as seen in several metabolic diseases including obesity, aging and T2D. Our main goal is to decipher the importance of mitochondrial structure in β -cell physiology. We focus on the regulation of three distinct aspects of β -cell function: metabolism, development and paracrine communication.

Project 1: Mitochondrial fusion in β -cell metabolism: Mitochondrial connectivity by fusion ensures the maintenance of crucial elements of mitochondrial function, including respiration, protein homeostasis and metabolite availability. This project will investigate the regulation of key metabolic and signaling pathways by Mfn1/2 and Opa1 in β -cells. High-resolution live-cell imaging will be utilized to visualize how mitochondrial fusion proceeds upon varying nutrient stimulation and metabolic stress. Multi-omic and biochemical analyses will be used to elucidate how mitochondrial dynamics regulate metabolic pathways essential for physiological and compensatory β -cell responses.

Project 2: Mitochondrial dynamics in β -cell development: Nutritional status during early life has profound implications on β -cell development, with neonatal obesity potentially predisposing offspring to developing T2D. This project will examine whether alterations in Mfn1/2, Opa1 and Drp1 function within developing β -cells influence susceptibility to failure later in life. Mouse models of early life obesity will be utilized to assess postnatal β -cell development, physiological function, and responses to diet-induced obesity.

Project 3: Paracrine regulation of mitochondrial structure: β -cells along with their neighboring α - and δ -cells, form endocrine clusters, referred to as pancreatic islets. Cell contacts and other hormones secreted into the islet microenvironment constitute finely regulated paracrine mechanisms that regulate insulin output from β -cells. This project will leverage ML-based image segmentation, 3D reconstruction and functional assays to study how these paracrine signals converge to modulate β -cell mitochondrial structure and insulin secretion.

Summer interns will have the opportunity to assist with laboratory techniques including live-cell imaging, in vivo physiological testing, mouse tissue isolation, molecular and cell biology, and tissue culture using immortalized cell lines, mouse, and human donor cells.

Soudamani Singh, PhD.

Associate Professor,

Department of Biomedical Sciences

Joan C Edwards School of Medicine

Marshall University

singhs@marshall.edu

(304) 696-5256

1. Adipose-Derived Exosomes and Nutrient Absorption

Obesity is a significant risk factor for type 2 diabetes. Obesity leads to excessive accumulation of adipose (fat) tissue, which, in turn, triggers chronic low-grade inflammation and metabolic dysfunction. This project investigates how bioactive cargo within obese Adipose tissue-derived exosomes (Ad-EXs), such as microRNAs, proteins, and lipids, modulates the activity of nutrient transporters in intestinal epithelial cells. This project aims to explore how exosomes from obese Ad-EXs affect nutrient absorption in intestinal epithelial cells (IECs). You will investigate: How obese Ad-EXs affect nutrient transporters in IECs. What bioactive molecules (microRNAs, proteins, lipids) are present in these exosomes

2. Effects of Microplastics on Intestinal Nutrient Absorption

Microplastics are tiny plastic particles (1 μ m to 5 mm). Microplastics pose a significant threat to ecosystems and can enter the human body through inhalation, ingestion, and water consumption. On average, we probably consume microplastics equivalent to the weight of credit cards each month through food and water. Microplastics are a potential risk to human health and can cause organ damage and reproductive problems. Microplastics in the gastrointestinal tract can disrupt the gut microbiome, increase intestinal permeability, often referred to as "leaky gut," and trigger systemic inflammation. This project aims to understand how microplastics affect nutrient absorption in intestinal epithelial cells. You will test the toxicity of different microplastics to IECs. Study how nutrient uptake is altered after microplastic exposure.

Techniques You'll Learn

- Cell Culture – intestinal epithelial cells (IECs)
- Exosome Isolation (Ultracentrifugation) – separating exosomes from cell media or tissue samples
- Nanoparticle Tracking Analysis (NTA) – measuring exosome size and concentration
- Brush Border Membrane Lysate Preparation – isolating nutrient transporter-rich parts of cells
- Western Blotting – detecting IECs transporter-specific proteins
- Immunoassays & Colorimetric Assays – measuring molecular or functional changes in cells

Dr. Komal Sodhi

Associate Professor

Department of Surgery/Biomedical Sciences

Joan C Edwards School of Medicine

Marshall University

1700 3rd Ave.

Huntington, WV 25703-1104

sodhi@marshall.edu

(914) 629-3793

My principal research focus is to investigate the contributions of chronic oxidative stress to cardiovascular diseases, chronic kidney disease, neurodegeneration, obesity, and metabolic syndrome, as well as their associated long-term complications.

The following projects are available in my laboratory for the students:

1. Elucidating the role of Na/K-ATPase-mediated oxidative signaling in pathological progression of chronic diseases:

My laboratory focuses on the regulation of the cellular antioxidant defense system in pathophysiological states associated with chronic redox imbalance, specifically caused by Na/K-ATPase-mediated Src signaling. Studies from our group have shown that oxidative stress is an important component in the activation of Na/K-ATPase-mediated Src signaling and subsequent feed-forward ROS amplification. Based on these studies, my laboratory used Na/K-ATPase mimetic peptide, pNaKtide to restore cellular redox balance and suppress oxidative stress in various disease conditions. The students working on this project will aim to elucidate the role of Na/K-ATPase/Src signaling in several clinical conditions like obesity, atherosclerosis, uremic cardiomyopathy, cognitive decline and neurodegeneration.

2. Exploring clinical biochemistry for disease prognosis and treatment:

My lab conducts clinically relevant, basic science research in close collaborations with basic scientists and clinicians. Prior and ongoing clinical research conducted in my laboratory establishes the molecular mechanisms of various pathophysiological alterations associated with chronic diseases, with great translational applicability and potential to establish prevention and treatment strategies. We have developed scientific premises for novel research methodologies and pathways to target diseases of public health concern, especially in West Virginia; primarily inclusive of obesity, dementia, heart diseases, renal diseases and metabolic syndrome. Specifically, our project will aim to establish disease prognostic strategies through the analysis of circulating biomarkers and microRNAs that correlate with the prediction of disease severity to promote future research on advanced therapeutic targets and prognostic predictors.

The students will be exposed to a variety of cellular and molecular techniques.

The techniques that are routinely performed in our laboratory:

- Cell culture techniques
- Real-time -Reverse Transcription Polymerase Chain Reaction
- Enzyme-Linked Immunosorbent Assay
- Immunoblot analysis of proteins
- Animal studies in experimental mouse models on metabolic and molecular pathways
- Biomarker and microRNA analysis in human plasma samples

Mohammad Vahed, Ph.D.

Research Scientist – Bioinformatics & AI

Department of Biomedical Sciences

Joan C. Edwards School of Medicine, Marshall University

vahed@marshall.edu

Area of Interest:

Computational biology, biomedical data science, and AI applications in health research

Overview

My research combines biology, medicine, and data science to answer real biomedical questions using modern computational tools. I develop and apply artificial-intelligence and machine-learning methods to identify molecular patterns that can improve diagnosis and treatment of human diseases such as cancer, lung disorders, and age-related cognitive decline.

For the **WV-INBRE mentoring program**, my goal is to help students, especially those **without prior coding or computational experience** gain hands-on exposure to biomedical data analysis in a simple, guided way. We use **interactive Jupyter notebooks** that allow students to explore real biological data step-by-step while learning basic programming, visualization, and interpretation skills.

Student Projects

1. AI Biomarkers for Cancer and Immunotherapy Response (IRnet)

Students learn how gene-expression data can be used to predict which patients respond to specific therapies. Using small, curated datasets, they'll explore:

- How to visualize data and perform basic statistics in Jupyter notebooks
- How to train and test simple prediction models (logistic regression or random forest)
- How to interpret and visualize important genes or pathways linked to therapy response

Skills: data wrangling, supervised learning, biological interpretation

2. Single-Cell AI to Understand Disease Mechanisms (G2PDeep)

Students explore how diseases differ across cell types (immune vs. epithelial) and between males and females. Using provided examples and visualizations, they learn how single-cell data are structured and how AI can identify cell-specific gene signatures.

- Interactive plots (UMAP, heatmaps) show patterns across cell populations
- Students can adjust model parameters in notebook cells and instantly see effects

Skills: single-cell data interpretation, visualization, critical thinking about biological variability

What Students Will Learn

- Basic programming in **Python, R and Jupyter Notebooks** (no prior experience required)
- How to interpret large biomedical datasets and connect patterns to biology
- Fundamentals of AI/ML in an accessible, visual way
- How computational tools contribute to precision medicine

Suitable for curious students from biology, chemistry, medicine, or related fields who want to see how computers can accelerate biomedical discovery. No advanced math or programming background is needed just curiosity and willingness to learn.

Dr. Monica Valentovic

Professor of Biomedical Sciences

Pharmacology and Toxicology Emphasis

Joan C. Edwards School of Medicine, Marshall University

valentov@marshall.edu

(304) 696-7332

Our laboratory is focused on exploring new interventions that will reduce the adverse effects of drugs. We have recently focused on examining ways to reduce the toxicities of cancer chemotherapy agents. Projects available in my lab:

Project #1. Reducing serious cancer chemotherapy side effects. This is an ongoing project that has been funded by a federal grant from NIH. Our laboratory is evaluating new compounds that may reduce the adverse effects experienced by individuals treated with cancer chemotherapy drugs. All cancer chemotherapy agents induce side effects and reducing these side effects will allow a better quality of life for the individual and potentially improve the success of the cancer chemotherapy agent. A long-term goal is to develop methods to improve the effectiveness of the cancer chemotherapeutic agents while lessening the side effects. This project has clear clinical relevance and is translational. The drugs we are exploring are used in controlling breast, lung, ovarian cancer and leukemia. An individual involved in this project will investigate cellular changes in toxicity, specifically we want to explore changes in the mitochondria as well as post-translational modifications of proteins caused by exposure to cancer chemotherapy drugs including doxorubicin, cisplatin camptothecin or irinotecan.

Project #2. Potential role of e-vape flavoring agents in renal impairment. Vaping products have a complex series of flavoring agents. Recent studies have shown alterations in genetic expression in the lung, kidney, brain and liver following vaping. We will examine changes mediated by flavoring aldehydes on human renal proximal tubules. This project will examine the impact of flavoring aldehydes on mitochondrial proteins critical in generation of ATP.

Project #3. Examination of the mechanism of renal damage by an antiviral agent used in in treating HIV and hepatitis B patients. Patients with HIV or hepatitis B must take antiviral agents to slow the progression of their disease. These drugs are taken for very long period of time even years. Side effects often occur after someone takes an antiviral agent for over 1 year. We are examining the mechanism of damage to the kidney by a commonly used antiviral agent. We are using a normal human proximal tubular epithelial cell culture model for this study. We have preliminary results to suggest certain agents can reduce the side effects of the antiviral agents but would not impact the pharmacologic activity.

Dr. Mindy Varney

Assistant Professor

Marshall University School of Pharmacy

Department of Pharmaceutical Science and Research

339 Stephen J. Kopp Hall

One John Marshall Drive

Huntington, WV 25755

e-mail: varney31@marshall.edu

1. Determining how obesity contributes to initiation and progression of myelodysplastic syndromes (MDS), which are blood and bone marrow cancers. MDS are blood and bone marrow cancers that are often caused in part by overactive inflammation in hematopoietic stem and progenitor cells. Obesity has been linked to MDS and acute myeloid leukemia (AML) but has not been studied in our double knockout (Tifab and miR-146a KO) mouse model of MDS/AML. We will perform studies such that MDS susceptible mice are subjected to control and Western diet to determine mechanisms by which obesity contributes to initiation and progression of disease. We anticipate mechanisms to involve diet/obesity-driven changes in hematopoietic stem and progenitor cell differentiation. We will also plan to determine if this can exist as an epigenetic effect (Do offspring of parents on poor diet have increased susceptibility to MDS initiation and/or progression?)

<https://pubmed.ncbi.nlm.nih.gov/27733775/>

<https://pubmed.ncbi.nlm.nih.gov/21038084/>

<https://pubmed.ncbi.nlm.nih.gov/19296839/>

2. Defining the mechanisms by which obese individuals are more susceptible to infection and have lowered vaccine efficacy. We hypothesize that this occurs through dietary and obesity-driven effects on hematopoietic stem cells, which we have found to be important in providing immune protection against pathogenic threats. We are investigating multiple vaccines in this study. We will also determine if this can exist as an epigenetic effect (Do offspring of parents on poor diet have decreased vaccine-induced immune protection against infectious disease?).

<https://pubmed.ncbi.nlm.nih.gov/21038084/>

<https://pubmed.ncbi.nlm.nih.gov/19296839/>

<https://pubmed.ncbi.nlm.nih.gov/30405604/>

Mohit Verma, Ph.D.

Research Scientist – Bioinformatics & Integrative Omics
Translational Bioinformatics and AI Innovation Lab (TBAiL)
Department of Biomedical Sciences
Joan C. Edwards School of Medicine, Marshall University
vermam@marshall.edu
linkedin.com/in/mohit-verma-phd-879a531b

Area of Interest

Computational biology, multi-omics integration, cancer immunoprevention, lipid metabolism, and maternal-fetal transcriptomics, miRNA/lncRNA analysis

Overview

I work in the *Translational Bioinformatics and AI Innovation Lab (TBAiL)* at Marshall University, where we use multi-omics analytics and systems informatics to study biological complexity across species and disease contexts. My work bridges plant systems biology, cancer immunology, and maternal-fetal health, applying transcriptomics, proteomics, lipidomics, and EV/small RNA profiling to dissect key molecular pathways.

Students in this lab gain hands-on experience with RNA-seq, immune deconvolution, metabolic modeling, and pipeline automation in high-performance computing environments. We use tools like Snakemake, Docker, MixOmics, and Seurat, with integrated web platforms such as OmicsVerse, KBCCommons, and the Cancer Immuno-Prevention Resource (CIR) to ensure reproducibility and usability of data.

Student Projects

1. Cross-Species Analysis of Camelina and Pennycress for Biofuel Traits and Decoding Fatty Acid Biosynthesis in Camelina Using Multi-Omics Tools

Students will integrate transcriptome, proteome, and lipidome data to dissect FAS gene families involved in seed oil metabolism. Compare lipid and gene expression traits under environmental stress using DIABLO, UpSetR, and co-expression networks.

Skills: Comparative genomics, MultiOmics analysis, edgeR/DIA-NN, pathway analysis, MixOmics, co-expression, UpSet visualization

2. Cancer Immunoprevention via SA-4-1BBL: An RNA-Seq Immune Atlas

Barcode RNA-seq analysis in murine tumor models to map immune landscape shifts and identify therapeutic pathways.

Skills: Bulk RNASeq Analysis, K-Mean Clustering, pseudotime analysis, immune deconvolution, pathway modeling

4. EV-Mediated Transcriptomic Rewiring in Obesity-Linked Neurodevelopment

Analyze how placenta-derived EVs affect fetal brain development under maternal obesity conditions.

Skills: small RNA profiling, EV biology, neuroimmune networks

5. Omics Workflow Automation and Portal Development

Build modular Snakemake/Nextflow pipelines for transcriptomics and deploy results in web platforms like KBCCommons and OmicsVerse.

Skills: reproducible workflows, containerization, web portal integration

What Students Will Learn: Basics of edgeR/DIA-NN, pathway analysis, MixOmics and lipidomics analysis/ How to build and run automated pipelines in HPC and cloud environments/ Hands-on experience

with biological data visualization and modeling/ Use of AI-powered platforms for multi-omics interpretation and discovery.

Jinju Wang, Ph.D.

Assistant Professor

Dept. of Biomedical Sciences, Joan C. Edwards School of Medicine

Marshall University

Email: wangjin@marshall.edu

Phone: 304-696-7073

Vascular disease is one of the major complications of diabetes and hypertension in the United States. Extracellular vesicles (EVs), including exosomes (EXs) and microvesicles (MVs), are emerging as a novel mechanism of intercellular communication. Increasing evidence suggests that EVs could convey proteins/genetic materials to recipient cells/tissue/organs in both physiological and pathological conditions. The Wang Lab at Marshall University majorly focuses on understanding the pathophysiological roles of EXs and their potential therapeutical applications in diabetes/hypertension-associated vascular diseases, including ischemic stroke and vascular dementia. Our long-term goal is to establish an EX-based therapy for treating vascular diseases.

Ongoing projects for students to be involved in:

Project 1: Role of circulating extracellular vesicles in hypertension-related cognitive impairment.

Hypertension is one of the leading risk factors for cognitive impairment, with vascular dementia being the second most common dementia-related disease globally. However, there is no effective treatment plan other than controlling the risk factors. The molecular mechanisms underlying the onset and progression of hypertension-related cognitive dysfunction are unclear. Growing studies indicate that cerebrovascular pathology precedes cognitive dysfunction. Increasing evidence shows the potential of circulating EVs (cEVs) in neurological diseases. We are interested in investigating the possible roles of cEVs in hypertension-related cognitive dysfunction and developing novel strategies for preventing, delaying, and treating cognitive impairment in older adults with hypertension.

Project 2: Role of exercise-intervened exosomes in ischemic stroke. We have previously demonstrated that exercise intervention could modulate the release of EXs. Our recent data shows that the exosomal-mediated communications between endothelial progenitor cells (EPCs) and brain cells, such as endothelial cells and neurons, are compromised in hypertension conditions. Exercise is a well-known nonpharmaceutical approach for cerebrovascular disease and has been shown to modulate the function of EPCs. Given that EX function varies on cellular status and origin, we speculate that exercise intervention can modulate EPC-derived EX (EPCEX)-mediated intercellular communication in the ischemic stroke brain. In this project, we aim to investigate exercise-regulated exosomes' effects and underlying mechanisms in protecting the brain from ischemic stroke.

Project 3: The potential application of angiotensin-converting enzyme 2 (ACE2)-primed EXs in hypertension-related ischemic stroke.

Accumulating evidence provided by others and our group has suggested that EPCs and EPC-EXs have a promising therapeutic application for cerebrovascular diseases. Angiotensin-converting enzyme 2 (ACE2), a negative regulator of the renin-angiotensin system, plays a critical role in hypertension-related cerebrovascular diseases. We have recently reported that EPC-EXs can convey ACE2 to protect vascular endothelial cells. The goal of this project is to investigate the potential effects of combining ACE2 and EPC-EXs for treating hypertension-related ischemic stroke.

Techniques that are routinely used in our study:

- 1) Cell culture and cell assays: cell proliferation and function assays, protein/RNA extraction, Western blot, qRT-PCR, etc.
- 2) Animal study: exosome and/or stem cell-based therapy for mice models; small animal microscopic surgeries, including telemetric probe implantation, tail vein injection, stereotactic microinjection; exercise training and behavior studies; vascular function study (pressure myography); cerebral blood flow measurement, etc.

- 3) Exosome-related assays: Nanoparticle tracking analysis (NTA), exosome labeling, co-culture assays.
- 4) Histology study: tissue sectioning (cryostat, paraffin embedding, and section), staining, immunohistochemistry, immunofluorescence, etc.

Dr. Wei Xu

Assistant Professor of Biomedical Sciences

Joan C. Edwards School of Medicine, Marshall University

xuw@marshall.edu

(304) 696-3042

How Lactate Metabolism Shapes the Virulence of *Streptococcus pyogenes*

Background: *Streptococcus pyogenes* (GAS) is a major human pathogen that causes infections ranging from strep throat to life-threatening "flesh-eating" disease. Our lab studies how the bacteria's metabolism is linked to its ability to cause disease. We have engineered special mutant strains: one that cannot produce lactate (Δdh) and another that can only produce lactate (LDH-only). We want to understand how this single metabolic change alters the bacterium's ability to grow, form tough communities (biofilms), survive inside immune cells, and produce virulence factors.

Student Involvement: The student will perform a series of experiments to compare the "lactate-negative" and "lactate-only" mutants to the normal (wild-type) bacteria. The student will:

1. Visualize Virulence on Specialized Media:
 - o Milk Plates: Culture strains on skim milk agar to visualize protease activity as clear zones around bacterial colonies where they've digested the milk proteins.
 - o Blood Agar: Culture strains on blood agar to visualize hemolysis (red blood cell destruction) as clear (beta-hemolysis) or green (alpha-hemolysis) zones around colonies.
2. Perform Bacterial Growth Curves: Grow the different GAS strains in various media to track growth over time, revealing if the mutants have fitness advantages or disadvantages.
3. Quantify Biofilm Formation: Use a crystal violet staining assay to measure how well each strain forms biofilms, testing if lactate production is necessary for building these protective bacterial communities.
4. Test Survival Inside Immune Cells: Use a gentamicin protection assay to infect RAW 264.7 macrophages and count surviving bacteria (CFUs), determining if the mutants are better or worse at evading immune killing.

Dr. Hongwei David Yu

Professor of Biomedical Sciences

Joan C. Edwards School of Medicine, Marshall University

yuh@marshall.edu

(304) 696-7356

<https://jcesom.marshall.edu/research/office-of-research-and-graduate-education/research-faculty/biomedical-sciences/yu/>

My research focuses on bacterial biofilms, lung infections and gut microbiota. Four projects are ongoing in the Yu lab.

Project #1: Cystic Fibrosis Biofilms. Individuals afflicted with cystic fibrosis (CF) are susceptible to recurrent lung infections with a bacterium called *Pseudomonas aeruginosa*. During the infection in CF, this bacterium forms a capsule (biofilms) by producing a polysaccharide called alginate. Alginate is a virulence factor that allows greater adhesion to lung epithelial cells, as well as protection from antibiotics and the host's immune system. We study how alginate production is regulated. Elucidation of the alginate pathways will lead to better understand the pathogenesis, and development of novel therapeutics for treatment in CF.

Project #2: Testing Antimicrobials. Most of bacterial lung infections starts with the colonization of upper respiratory tract. Aspiration of oropharyngeal secretions containing colonizing bacteria deep into the lung allows for the establishment of lower respiratory tract infections. We are using an inhalation exposure system to introduce bacteria into the distal airways of the mouse lungs, causing the development of pneumonia. This model is being utilized to test the safety and efficacy of novel antimicrobials against the multiple drug-resistant (MDR) lung infection. The goal of this project is to develop novel therapeutics against the MDR Lung infections and pneumonia.

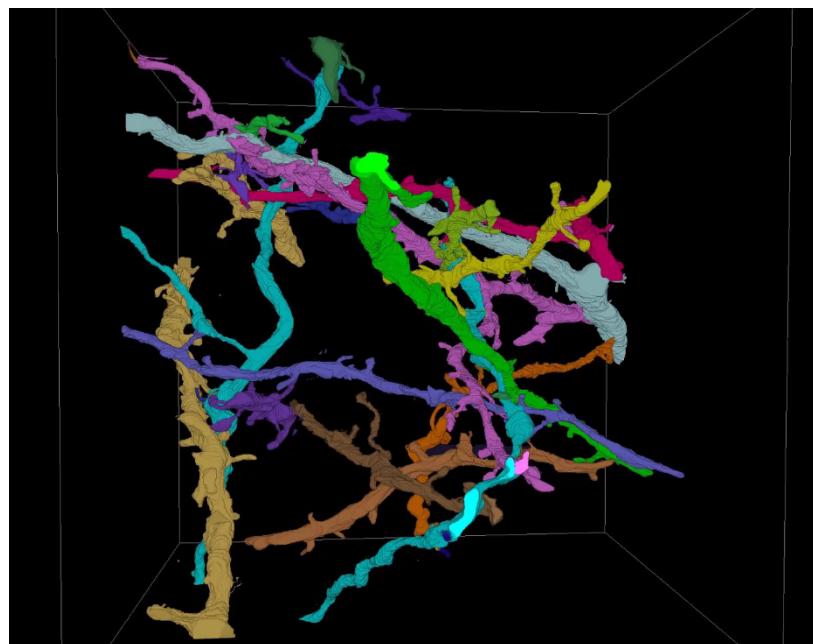
Project #3: SFB Probiotics. Gut microbiota, a bacterial community made up of 1,000 different species, are important to human health. Among all the species, there is a morphologically-distinct symbiotic member known as segmented filamentous bacteria (SFB). The SFB belongs to a group of clostridia bacteria, which cannot be grown *in vitro*. However, the SFB play a vital role in the development of the immune system in mice. More specifically, SFB have been shown to attach to the apical epithelium of the small intestine to induce the interleukin-17-producing T helper (TH₁₇) cells. TH₁₇ cells are important for the protection against intestinal pathogens as well as in maintaining gut homeostasis. In this project, we will examine possibilities of how to develop the SFB into a novel probiotic to prevent and control the gastrointestinal diseases in children.

Project #4: New Biopolymer Development. Through removal of major pathogenicity genes from genome and validation via the genome resequencing, we created a non-pathogenic strain of *P. aeruginosa* that produces large amounts of alginate. Alginate is a polysaccharide widely used in biomedical applications. It consists of an unbranched linear biopolymer comprised of two sugar monomers, β -D-mannuronate and its C5 epimer α -L-guluronate. Through introduction of changes of genetic codes for the alginate biosynthetic enzymes, we hope that we may be able to use the non-pathogenic strain to produce alginate with custom compositions.

II. Mentors At West Virginia University

Dr. Ariel Agmon

Professor


Department of Neuroscience

WVU School of Medicine

aagmon@hsc.wvu.edu

Three-dimensional reconstruction of neuronal networks in the brain

The seemingly miraculous abilities of the human brain are the outcome of billions of neurons constantly communicating with each other via myriads of synaptic connections; however, we still lack a detailed knowledge of who is connected with whom and how - i.e., of the "wiring diagram" of the brain. In the Agmon lab we are studying the cerebral cortex, the site of our sensory perceptions, our motor plans, and our higher faculties of cognition, thought and consciousness itself. We are beginning to make some headway into deciphering the wiring diagram of the cortical network by reconstructing in 3D, from serial electron-microscope images, the detailed structures of identified neurons, together with their detailed input and output synaptic connections. This is labor-intensive work, but rewards its practitioners with eye-opening insights into the structure and function of the brain. This work can be done by motivated undergraduate students on our lab computers, after an initial training by the PI, and is especially suitable as a summer internship project. No prior skills are required, but previous exposure to basic concepts in neuroscience may be helpful.

A 3-dimensional reconstruction, from serial electron-micrographs, of a thalamocortical axonal branch (two light blue segments), together with all its postsynaptic elements. Most postsynaptic elements are spiny dendrites of excitatory cells, but at least one (gray segment) is a smooth dendrite of an inhibitory basket cell. (Unpublished results from the Agmon lab.)

Dr. Sharan Bobbala

Assistant Professor

Department of Pharmaceutical Sciences

West Virginia University School of Pharmacy

sharan.bobbala@hsc.wvu.edu

(304) 293-0279

<https://directory.hsc.wvu.edu/Profile/70794>

Project 1: Precise intracellular delivery of adjuvants for vaccine applications

The activation of intracellular toll-like receptors (TLRs) TLR7, TLR8, TLR9, and TLR4 found in lysosomes, as well as NLRs and stimulator of interferon genes (STING), found in the cytoplasm of antigen-presenting cells (APCs), is considered a challenging task. This is because adjuvants should reach APC intracellular compartments at activatable quantities without degradation after *in vivo* administration. These issues can be addressed by adopting novel pH-responsive nanoparticulate delivery technologies, which enhance adjuvant solubility and improve pharmacokinetic properties and cellular delivery of adjuvants. APCs frequently phagocytose nanoparticles, localizing in the endolysosome and releasing adjuvant payloads in both endosomes and the cytoplasm. Furthermore, nanoparticles allow simultaneous encapsulation and cellular delivery of two or more adjuvants. The proposed project is a new strategy to deliver adjuvants into intracellular compartments effectively. Of note, optimized encapsulation and intracellular delivery of adjuvants will be of great interest in developing vaccine strategies against intracellular pathogens and cancers.

Project 2: Nucleic acid/small molecule treatment strategies for B-cell acute lymphoblastic leukemia

B-cell acute lymphoblastic leukemia (ALL) accounts for 75% of all ALL diagnoses. Unfortunately, conventional chemotherapies for B-cell ALL exhibit high relapse rates, with estimates of 40-50% and 15-20% in adult and pediatric populations, respectively. RNAi therapeutics, e.g., siRNA can efficiently knock down the expression of target genes in a sequence-specific way by mediating targeted mRNA degradation. However, significant progress has not been made in the development of siRNA therapeutics for ALL treatments. From a pharmaceutical standpoint, the delivery of two therapeutics (siRNA and small molecules) intracellularly with diverse physicochemical properties is challenging. For example, siRNA is a negatively charged hydrophilic nucleic acid with modest stability *in vitro* and *in vivo*, while the majority of chemotherapeutics exhibit poor solubility in aqueous solvents, which makes it a tough candidate to formulate and administer to patients. These challenges necessitate a significant need to develop a suitable delivery system that can encapsulate and deliver both of these therapeutics precisely to cancer cells.

Lizzie Bowbridge, PhD

Assistant Professor

Department of Physiology & Pharmacology

Robert C. Byrd Health Sciences Center

64 Medical Center Drive

West Virginia University

Morgantown, WV 26506-9229

ebowdrd@hsc.wvu.edu

Adverse reproductive outcomes, such as miscarriages, are common in pregnant women working in occupational settings. These women are exposed to toxicants such as, nano-titanium dioxide (nano-TIO₂) or electronic cigarettes (e-cig) via inhalation. One likely, but uninvestigated, way that inhaled toxicants may mediate these poor outcomes is by decreasing critical pregnancy hormones such as estradiol (E₂) or perturbations in reactive oxygen species. Currently, our lab is focused on linking E₂ and adverse reproductive outcomes due to maternal inhalation exposure, as well as understanding the role xanthine oxidase (XO) plays post-exposure. We aim to identify the roles of E₂ and XO (along with their activators/inhibitors) across timepoints in gestation on placental function and fetal health following maternal exposure and determining the impact of maternal inhalation exposure on reproductive health of F1 female progeny. Ultimately, we are working to elucidate the roles of E₂ and XO in regulating a healthy gestational environment for fetal development via uterine and placental vascular function, oxidant stress, and reproductive hormones during maternal inhalation exposure. This will be accomplished through serial blood sampling, *in vitro* vessel preparations and experimentation, as well as hormone and immunohistochemical assays. Students will be able to work with rodents as well as learn surgical and procedures and techniques.

Julie Brefczynski-Lewis, Ph.D.

Research Assistant Professor
Rockefeller Neuroscience Institute
Department of Neuroscience
304-680-4942

https://scholar.google.com/citations?hl=en&user=J9KaXY0AAAAJ&view_op=list_works&sortby=pubdate

Stress related to difficult personal encounters is very pervasive yet poorly understood. Such stress over time can lead to physical (e.g. cardiovascular) and mental health (e.g. depression/anxiety) issues. Compassion training is a simple and inexpensive way to help decrease the stressful reactions from difficult personal encounters. The project for the summer will be to examine brain responses (using PET (Positron Emission Tomography)) and heart rate variability to a stressful social situation. The physiological and neural responses to stressful stimuli will be measured before and after compassion meditation or relaxing nature sounds (active control).

This project will provide opportunities to learn:

- how to work with human participants,
- how to do measure neural response to stimuli using PET
- how to combine physiological, behavioral, and neural measures.

Morgan Bridi, Ph.D.

Assistant Professor

Department of Neuroscience

West Virginia University

mbridi@hsc.wvu.edu

<https://medicine.wvu.edu/neuroscience/faculty-labs/morgan-bridi-phd/>

www.morganbridi.org

Description of research:

The Bridi Lab's primary goal is to investigate how the brain's circuits and synapses (especially those made by inhibitory neurons) develop and change typical and atypical/aversive/challenging conditions. We study sensory and stress circuitry in the context of neurodevelopmental conditions, stroke, and stress.

Bridi laboratory activities:

How does the neuroendocrine stress response impact sensory perception and behavior, and vice versa? How does an ischemic injury like stroke relate to the body's stress response? How does lifetime experience affect the hypothalamic circuits that mediate the stress response? What can changes in sensory perception tell us about neurodevelopmental disorders and their root causes? What are the potential loci for these changes and relationships? Our lab uses a combination of *in vivo* imaging techniques, animal behavior, *ex vivo* physiology in brain slices, and biochemical assays to study the brain circuits involved in the perception of sensory information and stress, and how these phenomena may relate. We are especially interested in the development of inhibitory neurons and circuits that are important for shaping sensory perception in the cortex and regulating stress-responsive neuronal activity in the hypothalamus, and the ways that this inhibitory regulation may be affected by neuronal injury like stroke, adverse experience, and neurodevelopmental disorders.

Potential projects include:

- What do sensory circuits tell us about neurodevelopmental conditions? Using sensory assays, *ex vivo* electrophysiology, and *in vivo* multiphoton imaging to investigate how visual and auditory processing are altered in conditions like Autism Spectrum Disorders using transgenic mouse models.
- How do stress-control circuits develop under typical and atypical conditions? Using behavior, *in vivo* fiber photometry, and *ex vivo* electrophysiology to investigate how hypothalamic stress-control circuits develop and change in response to adverse experience and during neurodevelopmental challenges.
- How are sensory perception and the perception of stress linked?
- What are the implications of potentiated stress response after ischemic injury? Combining biochemical assays, immunohistochemical staining, behavior, chemogenetics, and *in vivo* fiber photometry, we are studying how persistent activation of the body's stress response systems after stroke impact recovery and outcomes, and exploring new avenues for treatment.

Techniques:

- Patch-clamp electrophysiology
- *In vivo* fiber photometry
- Animal behavior
- *In vivo* multiphoton imaging

Wen-Tao Deng, PH.D.

Assistant Professor

Department of Ophthalmology and Visual Sciences

Department of Biochemistry

West Virginia University

1 Medical Center Drive, Box 9193

Morgantown, WV 26506

(304) 293-4622 (office)

Wen.deng@hsc.wvu.edu

Gene therapy to treat inherited retinal disorders

Inherited retinal diseases are a clinically and genetically heterogeneous group of disorders characterized by photoreceptor degeneration or dysfunction. These disorders typically present with severe vision loss that can be progressive, with disease onset ranging from congenital to late adulthood. Our lab studies diseases affecting cone photoreceptors which are responsible for our daylight vision, visual acuity, and color vision. We investigate molecular mechanisms behind cone photoreceptor degeneration and perform gene therapy to restore the function and structure of these cells using animal models resembling patients carrying the corresponding mutations. The commonly used techniques in the lab include: molecular cloning, gene editing by CRISPR/Cas9, histology, immunohistochemistry, immunofluorescent microscopy, genotyping by polymerase chain reaction (PCR), Western blot analysis, real-time PCR, transmission electron microscope, etc.

Benoit Driesschaert, Ph.D.

Associate Professor

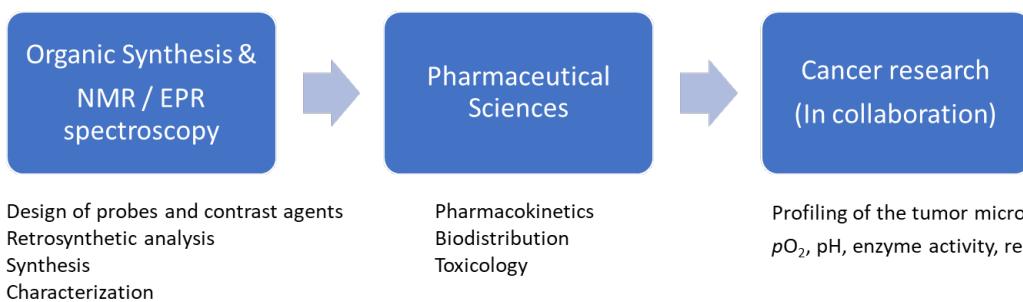
Department of Pharmaceutical Sciences

School of Pharmacy

C. Eugene Bennett Department of Chemistry

In Vivo Multifunctional Magnetic Resonance center

West Virginia University


www.immr-probes.com

Synthesis of imaging probes for biomedical magnetic resonance applications.

Magnetic Resonance Imaging is a non-invasive medical imaging technique that uses powerful magnets and radio waves to create detailed images of the body's internal structures, helping diagnose and monitor a wide range of medical conditions. Our lab focuses on the development of imaging probes and contrast agents for two types of magnetic resonance modalities, namely MRI and electron MRI (eMRI or EPR). The goal of the project is to synthesize stable organic radicals of type triarylmethyl radicals for application in biomedical imaging.

Lab Workflow:

INBRE participants in our laboratory will have the opportunity for hands-on experiments in organic synthesis (synthesis and purification of small organic molecules), NMR and EPR spectroscopy, and HPLC. INBRE summer participation in our lab is **best suited for students enrolled in a chemistry program**.

For current funding, <https://reporter.nih.gov/search/aeMdWHubG0ySATMt7s6OHQ/projects>

For publications, [https://immr-probes.com/publications/](http://immr-probes.com/publications/)

Dr. Jianhai Du

Associate Professor

Department of Ophthalmology and Visual Sciences

PO Box 9193

218 Erma Byrd Biomedical Bldg.

1 Medical Center Drive

Morgantown, WV 26506

jianhai.du@hsc.wvu.edu

The role of nutrient availability in retinal health

Like individual, different retinal cells have specific preferences for nutrients. We have reported that retinal pigment epithelium (RPE) prefers proline, lysine, branched-chain amino acids and choline. RPE is important to support retinal health and the dysfunction of RPE can cause age-related macular degeneration (AMD), the leading cause of blindness in the elderly. The InBRE summer students will test the importance of these nutrients in retinal metabolism, visual function and retinal morphology. The students will feed mice with nutrient-deficient diets and analyze retinal metabolism with targeted metabolomics, visual function with electroretinogram, and retinal cell morphology with optical coherence tomography (OCT). The INBRE students will also use stable-isotope labeled nutrient tracers to trace the metabolic flux of different cells in mouse retinas *in vivo* and *in vitro*. The completion of this project will provide important information about the roles of these nutrients in retinal function and disease.

Dr. Meenal Elliott

Teaching Associate Professor

Department of Microbiology, Immunology and Cell Biology

64 Medical Center Dr, 2095 HSCN

West Virginia University Health Science Center

Morgantown, WV 26506

304-293-0571

Investigating the “protective” immune response against SARS-CoV-2

SARS-CoV-2, the causative agent of COVID-19, has claimed more than 15 million lives worldwide, yet many healthy individuals remain disease free. To date, systemic vaccines containing the viral spike protein have effectively reduced disease fatality, but they have failed to block virus transmission, as breakthrough infections are a common occurrence. We have observed that antibodies against SARS-CoV-2 proteins contained in these vaccines are present in the saliva of “healthy” individuals and likely represent the “protective” immune response against this virus. Such antibodies are absent in saliva collected prior to November 2019, suggesting recent exposure to the virus in our subjects, irrespective of RT-PCR test results and vaccination status. They also demonstrate that vaccination fails to induce/boost virus-specific mucosal IgA and may therefore be unable to protect against virus transmission, a likely reason for breakthrough infection. Ongoing studies focus on mechanism of viral clearance in asymptomatic infection with a goal to develop appropriate therapeutics against SARS-CoV-2, its future variants and other respiratory viruses. Students working on summer projects in the lab will learn techniques such as Immunoassays, western blots, molecular cloning, flow cytometry etc. used in experiments in ongoing studies.

Werner J. Geldenhuys, B.Pharm., Ph.D.

Associate Professor

Department of Pharmaceutical Sciences

School of Pharmacy

West Virginia University

Morgantown, WV 26506 USA

Phone: 1-304-293-7401

Fax: 1-304-293-2576

werner.geldenhuys@hsc.wvu.edu

<http://pharmacy.hsc.wvu.edu/department-of-pharmaceutical-sciences/faculty-staff/?UserID=44407>

Discovery of compounds to treat Parkinson's disease

Parkinson's disease is an age-related neurodegenerative disease which affects the motor skills of patients. Unfortunately, no drugs are currently available to slow down the disease progression, and there is a great need to discover these types of compounds. In this study we will be screening a library of compounds which consist of FDA approved and novel compounds identified through computer aided drug design techniques in several enzyme and *C. elegans* models. Once the compounds are identified which show promise, we will test them for neuroprotective activity. During the period of the study, students will learn how to screen compounds for biological activity in a high throughput manner as well as how to utilize models of Parkinson's disease to screen for phenotypic improvement afforded by the compounds. The student will learn more about the drug discovery process and how new drugs are found and characterized.

Delivery of therapeutic proteins using nanoparticles

Parkinson's disease is an age-related neurodegenerative disease which affects the motor skills of patients. Unfortunately, no drugs are currently available to slow down the disease progression, and there is a great need to discover these types of compounds. In Parkinson's disease there are some mitochondrial proteins which we have found can be used to restore the damaged mitochondria seen in the disease. In this project we will work on developing a nanoparticle drug delivery system to deliver a therapeutic protein to the brain using several cell culture models. This project will introduce the student to the art of nanoparticle drug delivery formulation using biological therapeutic proteins as disease modifiers.

Dr. Lori Hazlehurst

Professor Pharmaceutical Science

lahazlehurst@hsc.wcu.edu

Development of novel therapeutic strategies for tumors that reside or home to bone

Background: Our laboratory has identified a novel target called Ero1-alpha for the treatment of lung cancer. Our data indicate that depleting Ero1-alpha using Crispr technologies inhibits the growth of lung cancer using cell culture as well as *in vivo* models. Ero1-alpha is critical for protein folding of secretory and membrane proteins. Our working hypothesis is that Ero1-alpha is critical for maintaining the tumor based secretome which drives growth, metastasis and immune suppression.

Project: The incoming INBRE student would work with graduate students in identifying secretory matrix proteins that confer the observed phenotype in Ero1-alpha depleted cell lines.

Students that joined our laboratory will learn cell culture, RT-PCR, standard genetic and pharmacological approaches for inhibiting Ero1-alpha as well as exposure to analyzing microarray and proteomic data.

Lisa Holland, Ph.D.

Professor of Chemistry

C. Eugene Bennett Department of Chemistry

West Virginia University

217 Clark Hall of Chemistry

Morgantown, WV 26506

Lisa.Holland@mail.wvu.edu

<https://lisaholland.faculty.wvu.edu>

Enzyme Inhibition: Using Microscale Separations to Screen and Quantify the Inhibition of Viral Neuraminidase**Project description**

Both the economic and disease burden of viral infections in the United States are high, costing \$11 billion for influenza in 2018 with 800,000 hospitalizations. Among the different biochemical targets, glycosylation is a powerful post-translational modification that plays a pivotal role in many viral infections. For example, receptor binding frequently involves sialic acid residues on cell surfaces. Moreover, the release of virions replicated inside of a host cell is often enhanced by viral enzymes that cleave sialic acids on the cell surface which subsequently accelerates the infection of other cells. While sialylation is a promising target to intercept viral infections, the quantification of neuraminidase inhibition remains a challenge with current assays. The objective of this research is to create enabling bioanalytical tools to rapidly quantify the interaction between sialylated compounds and neuraminidase enzymes in the presence of small molecule inhibitors. Nanogels are used to create nanoliter reaction zones to interrogate neuraminidase activity in seconds. This is possible because the viscosity of nanogel is thermally dependent and thermally reversible. At temperatures below 22°C nanogels have liquid-like viscosity. At higher temperatures nanogels have a gel-like viscosity. This property makes it easy to fill and pattern nanogels in narrow-bore capillaries at low temperatures using an automated capillary electrophoresis instrument. Once the nanogel is loaded into the capillary, the fluids are then locked in place by raising the temperature to gel the material. This enables the precise placement of 2-5 nanoliter enzyme reaction zones at the beginning of a capillary with a total liquid volume less than 1 microliter. Enzyme reactors of this low volume are mixed electrophoretically and then the substrate and products, or products, are separated, detected, and quantified. This approach is automated and reduces the time for enzymatic conversion from hours to minutes. The analyte resolution of biomolecules separated in nanogel yields efficient separation. This work is significant to separations because it transforms standard electrophoresis methods into sophisticated multifunctional separations that are programmed, erased, and repeatedly run.

Experimental/theoretical methods

- capillary electrophoresis
- enzyme inhibition measurements

Location of the project

353, 353 Chemistry Research Labs (primary location)

Key reference for further reading

Casto-Boggess, L.D., L.A. Holland, P.A. Lawer-Yolar, J.A. Lucas, and J.R. Guerrette, Microscale Quantification of the Inhibition of Neuraminidase Using Capillary Nanogel Electrophoresis. *Analytical Chemistry*, 2022. 94(6): p. 16151–16159.

Dr. John Hollander

Professor

Division of Exercise Physiology

Director, Mitochondria, Metabolism & Bioenergetics Working Group

Robert C. Byrd Health Sciences Center of West Virginia University

jhollander@hsc.wvu.edu

(304) 293-3683

<https://directory.hsc.wvu.edu/Profile/29934>

Cardiovascular Research (This project is appropriate for faculty and/or students)

INBRE program participants will work in conjunction with laboratory personnel on projects examining metabolic aspects of cardiac diseases. Projects in the laboratory focus specifically on understanding the role played by proteins thought to be protective against the development of heart failure during diabetes mellitus as well as the genetic regulation of these proteins. Our studies have a tremendous impact on Appalachia due to the high incidence rate of diabetes mellitus and obesity. The goal of these studies is to provide insight into the mechanism of action of these proteins and genes, with the goal of designing therapeutics to treat cardiac disease states. Our experimentation involves both basic research and analyses in patient populations.

INBRE participants will interact with graduate students and staff members to answer research questions, using a multidisciplinary approach that includes genetic modification of the heart in both cell and animal models as well as analyses in patient samples. Training will be provided to the participants, which includes molecular cloning, whole heart physiology, RNA, DNA, and protein manipulation, bioinformatics as well as biochemical analyses.

Dr. Gangqing (Michael) Hu

Assistant Professor and Director of Bioinformatics
Department of Microbiology, Immunology, and Cell Biology
School of Medicine
West Virginia University
Morgantown, WV 26506-9177
Tel: 1-304-581-1692
Lab website: <https://openwetware.org/wiki/Hu>

Bioinformatics, AI (Large Language Models), Data Science, and Epigenome Biology

Dr. Hu's laboratory exemplifies the effortless merger of Large Language Models (LLMs), such as ChatGPT, with bioinformatics education and research. This commitment has birthed 'Prompt Bioinformatics', an innovative concept to harness the profound potential of natural language in guiding the nuanced processes of bioinformatics data analysis. In addition, our investigative efforts extend into the innovative use of LLMs across a vast spectrum of clinical environments.

Simultaneously, we deeply immerse ourselves in another cornerstone of our research - decoding the cryptic epigenetic mechanisms that breed drug resistance in hematological malignancies. Equipped with a comprehensive collection of epigenetic assays such as RNA-Seq, ChIP-Seq, ATAC-Seq, and single cell Multiome, our commitment remains strong to dissect these intricate processes, consequently setting the stage for the identification of new drug targets.

Projects: 1) Innovative use of ChatGPT in processing medical texts and images for improving diagnosis. 2) decoding cellular heterogenetic underlying drug resistance of multiple myeloma using single-cell epigenetic assays. During the internship, the trainees will learn prompt engineering skills for effective communication with chatbots, basic concepts on the biology of epigenetic regulation and receive hands-on experience on the processing and integrating high-throughput genomic sequencing data.

Salik Hussain DVM, PhD

Associate Professor

Department of Physiology, Pharmacology & and Toxicology

Department of Microbiology, Immunology and Cell Biology

School of Medicine, West Virginia University

Executive Committee Member Center for Inhalation Toxicology (iTOX)

3074-N Health Sciences Center

64 Medical Center Drive, Morgantown, WV 26506

salik.hussain@hsc.wvu.edu

Phone Office: (304) 293-8047

<https://directory.hsc.wvu.edu/Profile/54205>

Lung diseases are among top five causes of global mortality (WHO). Almost 15% of the US population suffer from lung inflammatory diseases e.g., asthma affects 1-18% of global population (approximately 300 million individuals), including over 25 million people in the United States. Global asthma patient number is expected to reach 400 million by 2020 and asthma is implicated in one of every 250 deaths worldwide. Environmental and occupational agents (ground level ozone, particulate matter, nanomaterials) significantly impact the development as well as exacerbations of the respiratory disorders including asthma and pulmonary fibrosis. The over-arching goal of our research is to identify novel therapeutic targets to treat pulmonary disorders. We elucidate cellular and molecular pathways implicated in pulmonary disease susceptibility by studying patient samples, in vitro and in vivo models of pulmonary disease and primary airway an/alveolar organoids.

Techniques:

- In vitro Organoid Cultures (air-Liquid Interface cultures, 3D Alveolar cultures)
- Lung Physiology Measurements (state of the art lung function measurements)
- Translational Studies (human clinical samples)
- Rodent Models (disease, transgenic, cell type specific gene deletions).

Available Projects:

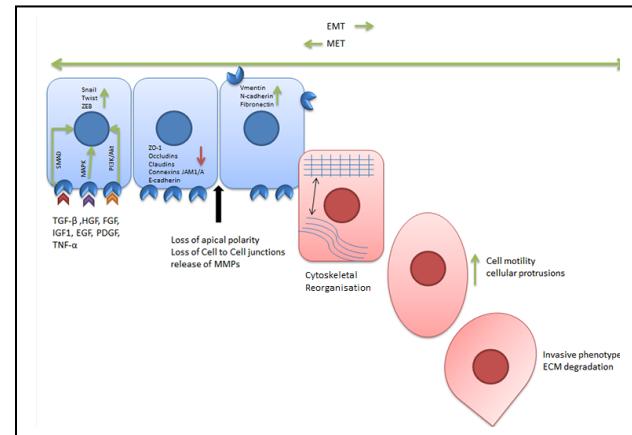
- Role of Alveolar Progenitor/Stem cells in Lung regeneration after Acute Lung Injury
- Innate immune responses in pulmonary disease susceptibility
- Early life/Childhood Asthma (Environmental Exposures x susceptible gene interactions)

Alexey Ivanov, Ph.D.

Research Assistant Professor

Department of Biochemistry and Molecular Medicine, Cancer Institute, West Virginia University

aivanov@hsc.wvu.edu


(304) 293-4936

<https://directory.hsc.wvu.edu/Individual/Index/30034>

Description of Research

Vast majority of human tumors are of epithelial origin, e.g. they derive from cells highly organized in specialized epithelial layers. At the same time, most cancer-related deaths occur due to tumor recurrence and spread to distant organs (metastasis), which are tightly linked to acquisition by cancer cells of mesenchymal properties such as increased motility, invasion and resistance to chemotherapy. The metastasis stage of cancer is associated with the epithelial-to-mesenchymal transition (EMT). Normally acting only during early embryonic development, the EMT program is highjacked by cancer cells during evolution of individual tumors. EMT is activated by a handful of transcription factors referred to as the EMT master regulators, such as Snail and ZEB.

The goals of our research are to identify transcriptional network involved in activation of EMT during cancer metastasis. This knowledge will help to develop future therapeutic approaches in treating cancer and prevention of metastasis.

Available projects:

1. Negative control of EMT by epithelial-specific transcription factors.

EMT promotes cancer cell invasion, metastasis and drug resistance. Primary breast tumors largely maintain inherent epithelial status. However, cancer cells on the tumor periphery are believed to undergo partial EMT and disseminate to distant organs. The goal of this project is to define the roles of several transcription factors including OVOL, GRHL and FOXA1 responsible for the maintenance of the epithelial state in suppression of EMT.

2. Role of the TGF-beta pathway in partial EMT and drug resistance of triple-negative breast cancer.

Transforming growth factor beta (TGF-beta) acts as a tumor suppressor at the early stages of cancer development. Cancer cells evolve various mechanisms to overcome TGF-beta inhibitory effects, including silencing and mutation of TGF-beta receptors or silencing and deletion of TGF-beta target genes involved in growth suppression. The latter mechanism is often observed in triple-negative breast cancer (TNBC). TNBC cells show increased TGF-beta signaling leading to partial EMT and resistance to certain drug therapies. The goal of this project is to investigate if pharmacological inhibition of the TGF-beta pathway combined with standard cancer therapy will improve drug response in vitro.

3. Identification and characterization of prognostic markers for lung cancer.

Lung cancer is the leading cause of cancer related deaths. Previously, we have identified several biomarkers, including gene ZNF71, which can predict lung cancer patient response to chemotherapy. The goal of this project is to characterize the molecular mechanisms of ZNF71 function in lung cancer metastasis and EMT.

Former WV-INBRE summer research interns in the lab

Year	Name & College	Current position
2021	Linh Nguyen, Concord University	in PhD program at UT Austin
2019	Jessica Johnson, Fairmont State University	TBD
2018	Emily Means, WV Wesleyan College	earned MD at Lake Erie College of Osteopathic Medicine
2015	Brandon Trinh, Bethany College	environmental hazardous waste management

2013 Morgan Johnson, Shepherd University
2012 Anna Alappat, Shepherd University
2009 Icel Cavis, Shepherd University

earned MD at WVU School of Medicine
earned MD at WVU School of Medicine
FBI Forensics Lab, Quantico, VA

Dr. Saravanan Kolandaivelu, Ph.D.

Associate Professor

Department of Ophthalmology and Visual Sciences
Department of Biochemistry and Molecular Medicine
One Medical Center Drive, 64 HSC North
ERMA Building, 2nd Floor, Room # 218
West Virginia University, Morgantown, WV-26506
Phone: 304-293-1519
Email: kolandaivelus@hsc.wvu.edu
<https://directory.hsc.wvu.edu/Profile/30322#research>

1. The molecular mechanism behind the nuclear-specific NAD⁺ synthase role in retinal neurogenesis.

Nicotinamide adenine dinucleotide (NAD⁺) is an essential molecule involved in cell survival, differentiation, senescence, and genomic integrity. The mammalian retina depends heavily on proper NAD⁺ homeostasis for normal development and function; however, the specific roles of subcellular NAD⁺ pools remain poorly understood. Three subcellular NAD⁺ synthases, *nicotinamide mononucleotide adenylyltransferase-1* (NMNAT1; nuclear), NMNAT2 (Golgi/cytoplasmic), and NMNAT3 (mitochondrial), are responsible for maintaining NAD⁺ levels required for distinct cellular processes. Previous studies, including our own, have demonstrated that the loss of the nuclear-specific NAD⁺ synthase NMNAT1, which is associated with severe blindness in children through mechanisms that are not yet fully understood, leads to early and severe retinal degeneration. This project aims to investigate the molecular mechanisms underlying NMNAT1 function in retinal neurogenesis, focusing on how nuclear NAD⁺ influences the differentiation of photoreceptors and bipolar neurons in the developing murine retina. Summer students will gain hands-on experience in animal handling, retinal tissue preparation, immunocytochemistry, Western blotting, mammalian cell culture, and confocal microscopy, as well as opportunities to present their findings at WVU vision research meetings and to be included as co-authors on resulting manuscripts.

2. The molecular interplay between NMNAT1 and SARM1 in retinal neurogenesis. Our previous studies have shown that loss of the nuclear-specific NAD⁺ synthase *nicotinamide mononucleotide adenylyltransferase-1* (NMNAT1), which is associated with early-onset blinding diseases, leads to severe retinal degeneration during development. *Sterile alpha and TIR motif-containing protein 1* (SARM1) is a key NAD⁺-degrading enzyme implicated in axonal and neuronal degeneration. Earlier work demonstrated that postnatal deletion of NMNAT1 in mice lacking SARM1 can preserve retinal structure and function. However, it remains unclear whether SARM1 loss can protect against the developmental retinal defects that arise from embryonic NMNAT1 deficiency. To address this gap, we aim to investigate the mechanisms underlying NMNAT1's essential role during embryonic and early postnatal retinal development compared with adulthood, in the context of SARM1 deficiency. This project will investigate how the genetic deletion of SARM1 affects the retinal abnormalities caused by NMNAT1 loss, thereby elucidating the molecular crosstalk between nuclear NAD⁺ synthesis and SARM1-mediated neurodegenerative pathways in the developing murine retina. Summer students will gain hands-on experience in animal handling, retinal tissue preparation, immunocytochemistry, Western blotting, mammalian cell culture, and confocal microscopy, as well as opportunities to present their findings at WVU vision research meetings and to be included as co-authors on resulting manuscripts.

3. Uncovering the role of Na⁺/K⁺-ATPase-dependent vitamin C homeostasis in retinal function and neural circuitry. The photocurrent in retinal photoreceptors depends on precisely maintained ion gradients that enable the conversion of light into electrical signals. This gradient is largely controlled by the Na⁺/K⁺-ATPase (NKA), localized to the photoreceptor inner segment, where it functions as a heterodimer composed of a catalytic α 3 (ATP1A3) subunit and a non-catalytic β 2 (ATP1B2) subunit. Previous studies have shown that loss of ATP1B2 in the mouse retina causes rapid photoreceptor degeneration, yet the specific physiological role of this subunit remains unclear. Additionally, the interaction between NKA and retinoschisin-1 (RS1), a protein implicated in X-linked juvenile retinoschisis (XLRS), has not been fully characterized. Our metabolomic analyses reveal that ATP1B2 loss leads to a marked depletion of ascorbic acid (vitamin C), an essential antioxidant and cofactor involved in collagen and lipid synthesis, neurotransmitter metabolism, iron regulation, and extracellular matrix (ECM) stability. Vitamin C also plays a crucial role in maintaining retinal redox balance, photoreceptor survival, and synaptic integrity within the retinal circuitry. The overall goal of this study is to

elucidate how NKA dysfunction disrupts vitamin C homeostasis and to define its consequences for retinal metabolism, survival, and neural network organization. Summer interns will participate in electrophysiological recordings (electroretinography; ERG), imaging studies (immunolocalization, confocal microscopy), and molecular and biochemical assays (Western blotting, PCR, quantitative RT-PCR, and agarose gel electrophoresis), as well as data analysis and presentation in research meetings, with opportunities to be included as co-authors on resulting manuscripts.

Roberta Leonardi, Ph.D.

Associate Professor

Graduate Program Affiliations: Biochemistry and Molecular Biology

Office: 3143 HSN

Phone: 304-293-7591

Email: roleonardi@hsc.wvu.edu

Coenzyme A (CoA) is an essential and universally distributed cofactor that acts as the major acyl group carrier in the cell. Free CoA and acyl-CoAs are involved in hundreds of metabolic reactions and are among a selected number of small molecules that have the ability to act as global regulators of cellular metabolism. Consistent with this key function, CoA levels are at the same time tightly regulated and flexible, so that the available supply is sufficiently adaptive to metabolic challenges such as fasting or a high fat diet. Regulation of CoA levels occurs through coordination of synthesis and degradation. In the liver, modulation of the amount of CoA contributes to the metabolic flexibility of this organ and to its ability to maintain glucose homeostasis during a fast. Conversely, in diabetic mice, hepatic CoA levels are abnormally high and unresponsive to changes in the nutritional state.

Not much is known about CoA degradation. The goal of our research is to establish the importance of CoA-degrading enzymes in the regulation of CoA levels and energy metabolism. In particular, we are interested in studying these enzymes in the context of diabetes, obesity and other metabolic diseases using a combination of biochemistry, animal studies and metabolomics.

Scott Levick, PhD

Associate Professor

Physiology, Pharmacology, and Toxicology

West Virginia University

scott.levick@hsc.wvu.edu

<https://directory.hsc.wvu.edu/Profile/73823>

Fibrosis is the excess accumulation of extracellular matrix proteins such as collagen that adversely effects organ function. In the heart, fibrosis stiffens the heart, compromising its ability to fill properly. This ultimately can lead to heart failure with preserved ejection fraction (HFpEF). Currently, there are no specific treatments for HFpEF or the underlying cardiac fibrosis. Using mouse models of diabetes and hypertension, we have identified that the neurokinin-1 (NK-1R) is anti-fibrotic when activated by specific metabolites of the neuropeptide substance P. We now are trying to elucidate the mechanisms by which the NK-1R exerts anti-fibrotic effects. This includes the specific cell types involved (e.g. mast cells, macrophages, fibroblasts), and signaling pathways activated and/or inhibited by the NK-1R. Students involved in this project will learn multiple techniques including: 1) assays to assess gene expression and protein levels; 2) cell culture; 3) histological assessment of fibrosis and inflammatory cell infiltration; and 4) assessment of cardiac function.

James W. Lewis, Ph.D.

Professor

Dept. Neuroscience

West Virginia University

PO Box 9303

Morgantown, WV 26506

Phone: Cell (304) 680-4943

Email: jwlewis@hsc.wvu.edu

<https://medicine.hsc.wvu.edu/neuroscience/faculty-labs/james-w-lewis-phd/>

Description of Research (2024-2025): Neuroimaging of human brain function in perception.

Lewis laboratory activities:

Our lab studies a diverse range of human brain functions regarding sensory and pain perception, plus language perception. We use various neuroimaging techniques, including functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and also transcranial magnetic stimulation (TMS) to modulate pain perception (in a patient population). Recent research projects include:

1. Using EEG together with 3D-printing technology to objectively characterize signatures of chronic headache pain.
2. Using TMS to alleviate chronic headache pain (in patients)
3. Analyzing a completed fMRI dataset to characterize language-specific mechanisms of perception of spoken phrases in Chinese/English bilinguals.
4. Mapping morphology changes in the adult human brain over time (two or so decades), analyzing MRI data collected from two long-term participants.
5. Exploring the brains of participants with autism spectrum disorder (ASD) using collected resting-state functional connectivity (rsfMRI) data.

We primarily use computational approaches and methods for studying brain function, and thus applicants with a solid background in computer sciences or engineering are preferred.

Rong Liu, Ph.D.

Assistant Professor – Department of Biochemistry & Molecular Medicine

PhD: Wayne State University, MI

Postdoctoral Training: National Heart, Lung, and Blood Institute, MD

Email: rong.liu@hsc.wvu.edu

Molecular motors are fascinating biological machines that power much of the movement performed by living organisms. They utilize chemical energy in cells to generate mechanical force and motion, and play essential roles in diverse cellular and developmental processes. Numerous human diseases owe their origins to defects in molecular motor proteins, including cancer, neurodegenerative disorders, as well as hearing and vision losses.

The overarching goal of our lab is to understand how motor proteins function at the molecular level, with an emphasis on their roles in neurosensory cells (auditory hair cells and photoreceptor cells). To accomplish this, we use a bottom-up reconstitution approach to “reconstruct” a sub-fraction of the cellular network with purified components and to quantitatively study individual molecular behaviors using advanced microscopy. Combined with structural biology and live-cell imaging, these studies provide essential information across scales on the mechanisms by which molecular motors power development and self-organization of neurosensory cells.

INBRE summer students will have the opportunity to engage in the following projects and techniques:

Available projects:

- In vitro reconstitution of the microtubule cytoskeleton of auditory sensory epithelial cells
- Single-molecule super-resolution imaging of intraflagellar train (IFT) transport in mammalian primary cilia
- The structure and molecular characterization of *Drosophila* myosin-15

Techniques:

- Baculovirus/insect cells protein purification system
- Modern molecular biology techniques
- Total Internal Reflection Microscopy (TIRF) single-molecule imaging
- Mammalian cell culture and live cell imaging
- Super-resolution localization microscopy
- Biochemistry and enzymatic assays

Dr. Paul R. Lockman

Professor and Chair of Basic Pharmaceutical Sciences
Robert C. Byrd Health Sciences Center of West Virginia University
prlockman@hsc.wvu.edu
304-293-0944

Significance and Translational Relevance

Brain metastases pose a life-threatening problem for women with advanced metastatic breast cancer. Of women who have been diagnosed with disseminated breast cancer, ~10-16% will develop symptomatic brain metastases and at least 20-30% will have micrometastatic lesions present at autopsy. Once lesions are established in the central nervous system, only one in five women survive one year. We have recently shown that chemotherapeutics do not reach effective concentrations in ~90% of CNS metastases. Therefore, our lab is working on ways to prevent the formation of metastases in brain.

Project Information

Our lab uses cutting edge microscopy to identify single breast cancer cells that can invade into brain tissue. Once the cells are found we have techniques that can remove the individual cancer cell. Once the cell is collected the goal of the project is to identify if there is a DNA signature that allows the cancer cell to get into brain (>99% of breast cancer cells do not enter into brain tissue). Once that signature is identified it is hoped we will find a molecular target that can be blocked by a drug, which should reduce penetration of the cancer cells into brain. It is hoped this project will be a first step in the prevention of brain metastases of breast cancer.

Skills and/or experiences the student will be exposed to

1. Cell culture of human and mouse cells
2. Fluorescent microscopy – to potentially include multi-photon imaging
3. Bioluminescence imaging of cancer cells in living animals.
4. Laser micro-dissection of cells in tissue
5. RNA amplification
6. Microarray data

Dr. Randy J. Nelson

Professor and Chair

Department of Neuroscience

Hazel Ruby McQuain Chair for Neurological Research

West Virginia University

School of Medicine

Morgantown, WV 26506 USA

Circadian Rhythm Disruption and Health

Circadian rhythms are endogenous biological rhythms of about 24 hours and are a fundamental characteristic of life. Although life evolved over the past 3-4 billion years under bright days and dark nights, humans have been able to interrupt this natural light-dark cycle for the past 130 years or so with bright light at night. Our research group studies the effects of these disrupted circadian rhythms on several parameters including immune function, neuroinflammation, metabolism, pain, sleep, and mood. Summer interns and fellows would have the opportunity to assist with current projects in the lab which include: 1) the effects of light at night on metabolism, cognition, and pain sensitivity, and 2) the effects of circadian disruption on neuroinflammation associated with cardiac or cancer development and treatments.

Dr. Timothy R. Nurkiewicz

Professor of Physiology and Pharmacology
Center for Cardiovascular and Respiratory Sciences
Robert C. Byrd Health Sciences Center
West Virginia University, School of Medicine
tnurkiewicz@hsc.wvu.edu
(304) 293-7328

Airborne Particles and Systemic Microvascular Endothelial Dysfunction

Evidence indicates that acute exposure to airborne pollutants such as particulate matter (PM) and nanoparticles increases the risk of pulmonary and cardiovascular morbidity and mortality. This implies that PM affects extra-pulmonary tissues, as evidenced by the occurrence of cardiovascular dysfunction on high pollution days. However, the biological mechanisms by which PM evokes systemic effects remain to be defined. Despite its obvious importance in regulating the delivery of cells and molecules to all tissues, and in the etiology of most cardiovascular diseases, no research has investigated how systemic microvascular function is affected by pulmonary PM exposure. Our preliminary observations in the rat spinotrapezius muscle indicate that endothelium-dependent arteriolar dilation is significantly impaired after pulmonary particle exposure, and this impairment is associated with microvascular oxidative stress. Interestingly, this systemic microvascular effect can occur independent of pulmonary inflammation. My central hypothesis is that acute particle exposure affects peripheral microvascular function, and this effect is achieved by local reactive oxygen species production and/or altered neurogenic input to the systemic microcirculation. A fundamental understanding of these mechanisms is vital in preventing and treating the life-threatening events associated with air pollution. Our studies are further applied to the rapidly growing field of nanotoxicology. Wherein, it is acknowledged that nanotechnology has become a regular component of most every aspect of our daily lives, yet the toxicity of exposure to specific nanoparticles remains to be determined. Exposure to these nanoparticles carries just as much, if not more potential for generating profound effects on microvascular function. The student or faculty member will have the opportunity to develop surgical and experimental techniques associated with animal studies and isolated microvessels, as well as assist in exposing animals to various particle aerosols. These techniques include: inhalation exposure, animal surgery, microsurgery, intravital microscopy, in vivo measurement of oxidative stress and various micropipette-based techniques.

Dr. Mark Olfert

Director, Clinical and Translational Sciences PhD Program

Professor

Center for Inhalation Toxicology

Division of Exercise Physiology and Department of Physiology & Pharmacology

Robert C. Byrd Health Sciences Center of West Virginia University

imolfert@hsc.wvu.edu

(304) 293-0816

<http://directory.hsc.wvu.edu/Individual/Index/33239>

Title: Microvessel and vascular responses to E-cigarettes, nicotine and/or environmental stress

INBRE program participants will work in conjunction with laboratory personnel on projects examining blood vessel responses to varied conditions, such as E-cigarettes, inhaled nicotine and/or other conditions (nano-material exposure, chronic disease states, etc.). Projects in the laboratory focus specifically on understanding the proteins and cell signaling responsible for regulating the function and formation of blood vessels in response to environment stress (e.g. inhaled toxicants, electronic cigarettes), biological stresses (e.g. exercise), and/or the loss of blood vessels in disease (e.g. obesity, heart failure, lung disease, diabetes, etc.). The goal of these studies is to provide insight into the mechanism(s) involved with the ultimate goal of designing therapeutics to treat abnormal vascular pathology. INBRE participants will interact with graduate students and staff members to answer research questions, using a multidisciplinary approach that includes genetic modification, whole animal clinical and metabolic testing, and bench top tools for DNA, RNA and protein analyses. Training provided to the participants will include whole animal physiology, basic surgical and microscopy techniques, along with molecular and biochemical analyses.

Ming Pei, MD, PhD

Professor of Orthopaedics

Director, Stem Cell and Tissue Engineering Laboratory

West Virginia University

Morgantown, WV 26506-9196

Office: 304-293-1072

mpei@hsc.wvu.edu

<https://directory.hsc.wvu.edu/Profile/31300#research>

<https://scholar.google.com/citations?user=CEz75oQAAAAJ&hl=en>

Decode the mystery of matrix microenvironment behind the rejuvenation of adult stem cells

Adult stem cells are a potential cell source for tissue engineering and regeneration. Cell senescence resulting from ex vivo expansion is a challenge for application of adult stem cells in the treatment of human diseases. Our previous work indicates that matrix microenvironment is a promising approach for rejuvenation of adult stem cells toward a specific lineage differentiation. However, it remains unknown about the molecular mechanisms underlying this rejuvenation. Elucidation of potential mechanisms not only can facilitate to provide a large-quantity of high-quality tissue-specific stem cells for tissue engineering and regeneration but also can promote better understanding of cell-matrix crosstalk.

The project provides an opportunity to learn:

- 1) Cell and tissue culture
- 2) Cell proliferation and tri-lineage differentiation
- 3) Flow cytometry
- 4) Real-time quantitative PCR
- 5) Tissue sample process, sectioning, and staining
- 6) Western blot
- 7) RNA Sequencing
- 8) Proteomics

Dr. Elena N. Pugacheva

Associate Professor

Department of Biochemistry and WVU Cancer Institute

Robert C. Byrd Health Sciences Center of West Virginia University

epugacheva@hsc.wvu.edu

Phone: (304) 293-5295

Molecular mechanisms of breast cancer metastasis and tumor hypoxia

While significant progress has been made in treating breast cancer, there remain substantial problems in metastasis treatment. Tumor cells not successfully eliminated by treatment often remain dormant and later begin to grow and contribute to disease relapse. Our current project aims to define how cancer cells escape dormancy. One of the candidates we have published is AURKA kinase. The summer project will include using mouse tumor models and cultured breast cancer cells to investigate the effects of experimental drugs against tumor metastasis. During this investigation, students will learn about cancer and how to do cell culture, Western blot analysis of proteins, mouse tumor isolation, and confocal microscopy.

The role of NEED9 adaptor protein in metastasis of HER2+ breast cancers

High rates of division and aggressive metastasis characterize HER2+ breast cancers. We have shown that upregulation of NEED9 protein is often observed in HER2-expressing cells and correlates with poor outcomes. Recently, we developed a mouse model overexpressing HER2 and NEED9 to study its role in tumorigenesis and drug resistance. This project aims to decipher the role of NEED9 in the resistance of HER2+ cancers to standard-of-care drugs such as trastuzumab. This project already had many data points collected, and the student's role will be to measure metastatic lesions using immunofluorescent histology and digital pathology, cell culture, and drug treatment. The produced findings might be included in the manuscript and granted authorship.

Visvanathan Ramamurthy, Ph.D.

Professor and Chair,

Department of Biochemistry and Molecular Medicine

Vice-Chair, Research

Department of Ophthalmology and Visual Sciences

West Virginia University

Morgantown, WV 26506-9193

(304) 216 2133

ramamurthyv@hsc.wvu.edu

<https://medicine.hsc.wvu.edu/biochemistry/research-labs/visvanathan-ramamurthy/>

Defects in cilia lead to ciliopathy with male infertility, blindness, deafness, obesity, and hydrocephaly (accumulation of fluid in the brain). Using animal and cell models, we investigate the mechanisms behind ciliopathies, in particular blindness, deafness and hydrocephaly. We are also interested in how glia interacts and support the neurons.

The research group is a mix of technical staff, graduate and undergraduate students. INBRE students will be paired with graduate students. The students will be exposed to diverse experimental strategies, including molecular, cellular, and electrophysiological approaches. The experimental system uses neurons/glia and multiple animal models that phenocopy ciliopathies, blinding diseases and hearing loss.

For details on current research funding and details on our research, click the link below

<https://reporter.nih.gov/search/n6yU7RSY50O5NQrOblFxqw/projects?projects=Active>

Aaron R. Robart, Ph.D.

Associate Professor & Graduate Program Director
Department of Biochemistry and Molecular Medicine
Robert C. Byrd Health Sciences Center of West Virginia University
Email aaron.robart@hsc.wvu.edu
Lab website: <https://robartlab.wixsite.com/robartlab>

Structural Biology-Guided Exploration of Flavivirus 5' and 3' UTRs for the Development of Innovative Antiviral Therapeutics**Significance and Translational Relevance:**

This research project focuses on unraveling the structural mechanisms of the 5' and 3' untranslated regions (UTRs) of flavivirus genomes, with an emphasis on viruses such as Zika, yellow fever, and dengue. These regions play critical roles in the regulation of viral replication, translation, and host-virus interactions, making them attractive targets for therapeutic interventions. Insights into their structural dynamics could lead to the development of novel therapeutics, including small molecule inhibitors or RNA-based therapeutics designed to disrupt viral life cycles.

Potential Project Outcomes:

Using advanced structural biology techniques, this project will uncover the three-dimensional structures and mechanistic properties of the 5' and 3' UTRs. This knowledge will pave the way for designing targeted antiviral strategies aimed at interfering with RNA-mediated regulatory processes critical to flavivirus replication. Potential outcomes include the identification of key structural motifs for drug targeting, development of novel RNA-based inhibitors, and frameworks for innovative therapeutics with applications to multiple flavivirus-related diseases. This work will provide foundational insights into RNA structural biology and contribute to the global fight against emerging and re-emerging viral diseases.

Skills and/or Experiences Students Will Be Exposed To:

- Molecular biology techniques such as in vitro transcription, mutagenesis, and manipulation of viral RNA.
- RNA biochemistry, including purification, folding, and probing of RNA structures.
- Structural biology methods such as cryo-EM, NMR spectroscopy, and SAXS for analyzing RNA structures.
- Biophysical techniques for studying RNA-ligand interactions, including fluorescence anisotropy and ITC.
- Microbiology approaches, including viral RNA culture systems and replication assays.
- Participation in weekly lab meetings and collaborative brainstorming sessions.
- Individualized training in scientific writing and oral presentation skills.

Vincent Setola, PhD

Associate Professor

Department of Neuroscience

Department of Behavioral Medicine and Psychiatry

Rockefeller Neuroscience Institute

West Virginia University School of Medicine

108 Biomedical Road, PO Box 9303

Morgantown, WV 26506

304-293-1512

vssetola@hsc.wvu.edu

Using various strains of mice, we conduct behavioral experiments, neuronal activity labeling experiments, and single-neuron gene expression experiments to better understand the cell types and circuits involved in experiences and behaviors related to substance use disorder (SUD). We also use cultured cells and dissected brain tissue to conduct biochemical and pharmacological experiments to better understand how drugs of abuse affect SUD-relevant neuronal signaling. The impetus for these pursuits is to identify drugs and/or molecular targets that could lead to new medications for SUD.

Dr. Dharendra Thapa

Assistant Professor and Faculty Advisor for NSSA-WVU

Vice-Director Pathophysiology, Rehabilitation & Performance Graduate Program School of Medicine

West Virginia University dthapa@hsc.wvu.edu (304) 293-6527

<https://directory.hsc.wvu.edu/Profile/71598>

The goal of our research laboratory is to understand the role played by lysine acetylation, a post-translational modification shown to regulate function of majority of mitochondrial proteins. INBRE program participants will work on projects examining the role played by acetylation in regulating cardiac mitochondrial metabolism, oxidative stress, mitophagy, mitochondrial dynamics and bioenergetics. Some of the current ongoing projects in the laboratory that a student can work on are: 1) Role of mitochondrial protein acetylation in regulating mitochondria and cardiac function in hearts exposed to carbon black and ozone particles. 2) Mitochondria/ER Crosstalk and its role in healthy aging. 3) Transcriptional regulation of mitochondrial quality control and homeostasis by acetylation. 4) Mechanisms behind unconditioned chronic mild stress specific differences observed in male and female mice.

Participants will closely work and interact with graduate and undergraduate students in the lab and utilize/learn several research techniques, which includes western blotting, immunoprecipitations, quantitative RT-PCR, cell culture studies, protein activity assays, RNA, DNA isolations, and several assays to measure mitochondrial metabolism. During this internship, the goal would be to provide the trainees a supportive research environment where they learn to appreciate research and work towards answering their research questions.

Edwin Wan, Ph.D.

Associate Professor

Department of Microbiology, Immunology & Cell Biology,

Department of Neuroscience,

West Virginia University School of Medicine

edwin.wan@hsc.wvu.edu

<https://bchedwin79.wixsite.com/mysite>

Area of research: Immunology, Neuroscience, Autoimmune disease, Neuroimmunology, Inflammation

The overall goal of Edwin Wan's neuroimmunology lab is to understand how the immune system impacts the outcomes of neurological diseases, with the current focus on multiple sclerosis and ischemic stroke. We hope our findings will help identify novel therapeutic targets for these diseases.

Project one: cytokine signaling in the pathogenesis of multiple sclerosis (MS)

MS is an autoimmune disease initiated by the activation of central nervous system (CNS)-targeting T cells. CNS is ensheathed by three layers of cell-based meninges and is protected by the so-called blood-meningeal barrier (and a few other barriers) so T cells normally cannot enter the brain. However, during inflammatory events such as MS, T cells entered the meningeal area where they interact with antigen-presenting cells. This interaction is critical for the generation of factors that compromise the blood-meningeal barrier and direct cell trafficking so that immune cells can enter and damage CNS. Our main goal is to use animal models to identify the signals that initiate cell interactions in the meninges, the molecular pathways involved, and the effector molecules that are responsible to control immune cells entering CNS. We developed an exciting live-imaging technique to monitor immune cell interaction in the meninges of live mice to address our scientific questions.

Project two: Immune-glial cell interactions in brain recovery following ischemic stroke

The role of immune cells following ischemic stroke events is very different from their role in MS. Neurons are cells with high energy (i.e., glucose and oxygen) demands. When an ischemic stroke event happens blood flow is blocked in certain areas in the brain that leads to neuronal death and brain damage within minutes. Severe brain damage is hardly reversed due to the limited regeneration capacity of neurons. Thus, physiologically the brain will respond and form a "glial scar" aiming to confine the damage area and develop new blood vessels to compensate the damaged ones. The whole repair process is controlled by precise interactions between microglia (tissue-resident macrophages), astrocytes (CNS-supporting cells), and immune cells entered CNS. Our lab is interested to identify mediators and signaling pathways that control the interactions of cell types involved and investigate how aging affects brain repair following ischemic stroke. We use several innovative approaches in our study, including 3D fluorescence imaging to visualize the interactions between immune cells and vasculature network in the entire mouse brain and "spatial transcriptomic" technique that allows us to not only determine what genes are expressed in the glial scar but also the precise anatomical location within the glial scar where the genes are expressed.

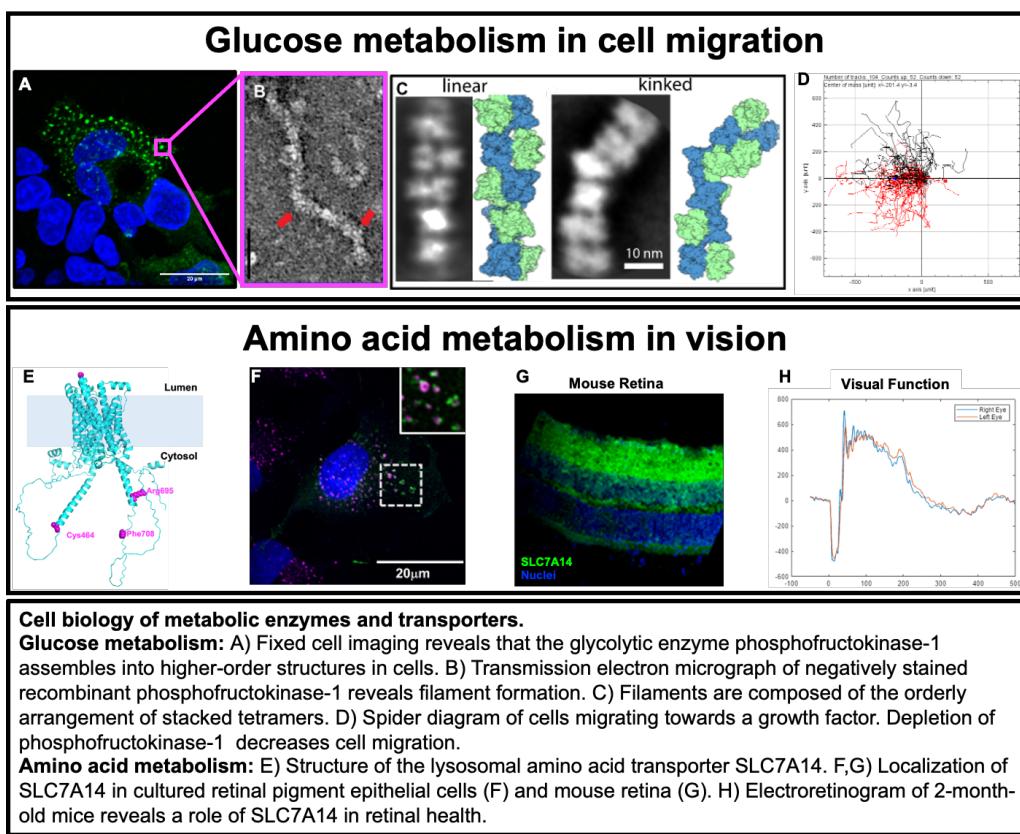
Bradley Webb, Ph.D.

Assistant Professor

Department of Biochemistry

West Virginia University School of Medicine

Office: 3121A HSC North


Lab: 3127 HSC North

304-293-6615

Bradley.webb@hsc.wvu.edu

Cell biology and biochemistry of intermediary metabolic enzymes

The enzymes and pathways controlling intermediary metabolism for energy production, nutrient utilization, and biomass synthesis play critical roles in cellular homeostasis. Dysregulated metabolic enzymes and pathways are now considered central to diseases such as cancer, diabetes, and blinding disorders. Despite being studied for half a century, we still have limited knowledge of the spatial and temporal dynamics of metabolic enzymes in cells, which is critical for understanding metabolic flexibility in normal cells and aberrant metabolism in diseases. Webb lab is currently addressing questions regarding the localization, regulation, and structure/function of metabolic enzymes and transporters. Using biochemical, cell biological, and cell imaging techniques, INBRE students will enhance our understanding of the spatial and temporal regulation of metabolic enzymes and how their dysregulation contributes to disease.

Publications:

<https://www.ncbi.nlm.nih.gov/sites/myncbi/bradley.webb.2/bibliography/46426825/public/?sort=date&direction=descending>

Alexander Widiapradja, PhD

Research Assistant Professor

Physiology, Pharmacology and Toxicology

Robert C.Byrd Health Sciences Center

West Virginia University

alexander.widiapradja@hsc.wvu.edu

The Effects of Foxe1 Loss of Function in Diabetic Thyroid

FOXE1 (forkhead box protein 1) is part of the forkhead box family of transcription factors that are responsible for cell proliferation and differentiation. The loss of FOXE1 function has been strongly associated with genetic predisposition to congenital hypothyroidism. Moreover, common FOXE1 polymorphic variants have been strongly associated with adult-onset hypothyroidism. Using our newly developed tamoxifen-induced *Foxe1*^{fl/fl}/Cre mouse model of adult *Foxe1* deficiency, we showed *Foxe1* loss in the adult mouse thyroid led to adverse changes in thyroid structure, including smaller and more condensed follicular architecture, as well as inflammation and fibrosis. This fibrotic response is significant given the estimate that fibrotic disease accounts for ~35% of world-wide deaths. Fibrosis is defined as an excess of extracellular matrix such as collagens in organs that ultimately impairs their functions. Type 2 diabetes mellitus (T2DM) can be classified as one such disease, given that in diabetes-induced interstitial fibrosis in the heart leads to impaired left ventricular compliance and dysfunction, ultimately leading to heart failure. However, T2DM-induced thyroidal fibrosis and the loss of *Foxe1* function in diabetes setting remain undetermined. In this project, we aim to determine the extent to which the loss of *Foxe1* functions play a role in T2DM-induced thyroidal inflammation and fibrosis using a mouse model of T2DM, *Lepr*^{db/db}. Through well established histological and immunofluorescence staining as well as quantitative real-time PCR, students will learn experimental techniques at the genetic and protein levels and apply the knowledge to understand the impact of T2D in thyroid health.